Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714355

ABSTRACT

Individuals with neurofibromatosis type 1 (NF-1), an autosomal dominant neurogenetic and tumor predisposition syndrome, are susceptible to developing low-grade glioma (LGG) and, less commonly, high-grade glioma (HGG). These gliomas exhibit loss of the neurofibromin gene (NF1), and 10-15% of sporadic HGG have somatic NF1 alterations. Loss of NF1 leads to hyperactive RAS signaling, creating opportunity given the established efficacy of MEK inhibitors (MEKi) in plexiform neurofibromas and some individuals with LGG. We observed that NF1-deficient glioblastoma neurospheres were sensitive to the combination of a MEKi (mirdametinib) with irradiation, as evidenced by synergistic inhibition of cell growth, colony formation, and increased cell death. In contrast, NF1-intact neurospheres were not sensitive to the combination, despite complete ERK pathway inhibition. No neurosphere lines exhibited enhanced sensitivity to temozolomide combined with mirdametinib. Mirdametinib decreased transcription of homologous recombination genes and RAD51 foci, associated with DNA damage repair, in sensitive models. Heterotopic xenograft models displayed synergistic growth inhibition to mirdametinib combined with irradiation in NF1-deficient glioma xenografts, but not those with intact NF1. In sensitive models, benefits were observed at least three weeks beyond the completion of treatment, including sustained phosphor-ERK inhibition on immunoblot and decreased Ki-67 expression. These observations demonstrate synergistic activity between mirdametinib and irradiation in NF1-deficient glioma models and may have clinical implications for patients with gliomas that harbor germline or somatic NF1 alterations.

2.
Oncol Rep ; 40(1): 443-453, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29750313

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) is considered to be involved in the development of glioma. However, uncovering the underlying mechanism of the proliferation of glioma cells is a challenging work in progress. We have identified the binding of the precursor of N-cadherin (proN-cadherin) and GDNF on the cell membrane in previous studies. In the present study, we observed increased U251 Malignant glioma (U251MG) cell viability by exogenous GDNF (50 ng/ml). We also confirmed that the high expression of the proN-cadherin was stimulated by exogenous GDNF. Concurrently, we affirmed that lower expression of proN-cadherin correlated with reduced glioma cell viability. Additionally, we observed glioma cell U251MG viability as the phosphorylation level of FGFR1 at Y653 and Y654 was increased after exogenous GDNF treatment, which led to increased interaction between proN-cadherin and FGFR1 (pY653+Y654). Our experiments presented a new mechanism adopted by GDNF supporting glioma development and indicated a possible therapeutic potential via the inhibition of proN-cadherin/FGFR1 interaction.


Subject(s)
Antigens, CD/genetics , Cadherins/genetics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glioma/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Glioma/pathology , Humans , Phosphorylation , Signal Transduction
3.
Front Mol Neurosci ; 10: 199, 2017.
Article in English | MEDLINE | ID: mdl-28701917

ABSTRACT

Neuronal migration is a critical process in the development of the nervous system. Defects in the migration of the neurons are associated with diseases like lissencephaly, subcortical band heterotopia (SBH), and pachygyria. Doublecortin (DCX) is an essential factor in neurogenesis and mutations in this protein impairs neuronal migration leading to several pathological conditions. Although, DCX is capable of modulating and stabilizing microtubules (MTs) to ensure effective migration, the mechanisms involved in executing these functions remain poorly understood. Meanwhile, there are existing gaps regarding the processes that underlie tumor initiation and progression into cancer as well as the ability to migrate and invade normal cells. Several studies suggest that DCX is involved in cancer metastasis. Unstable interactions between DCX and MTs destabilizes cytoskeletal organization leading to disorganized movements of cells, a process which may be implicated in the uncontrolled migration of cancer cells. However, the underlying mechanism is complex and require further clarification. Therefore, exploring the importance and features known up to date about this molecule will broaden our understanding and shed light on potential therapeutic approaches for the associated neurological diseases. This review summarizes current knowledge about DCX, its features, functions, and relationships with other proteins. We also present an overview of its role in cancer cells and highlight the importance of studying its gene mutations.

SELECTION OF CITATIONS
SEARCH DETAIL