Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 2198, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069164

ABSTRACT

While depression and chronic pain are frequently comorbid, underlying neuronal circuits and their psychopathological relevance remain poorly defined. Here we show in mice that hyperactivity of the neuronal pathway linking the basolateral amygdala to the anterior cingulate cortex is essential for chronic pain-induced depression. Moreover, activation of this pathway in naive male mice, in the absence of on-going pain, is sufficient to trigger depressive-like behaviors, as well as transcriptomic alterations that recapitulate core molecular features of depression in the human brain. These alterations notably impact gene modules related to myelination and the oligodendrocyte lineage. Among these, we show that Sema4a, which was significantly upregulated in both male mice and humans in the context of altered mood, is necessary for the emergence of emotional dysfunction. Overall, these results place the amygdalo-cingulate pathway at the core of pain and depression comorbidity, and unravel the role of Sema4a and impaired myelination in mood control.


Subject(s)
Basolateral Nuclear Complex , Chronic Pain , Semaphorins , Mice , Male , Humans , Animals , Depression/genetics , Gyrus Cinguli/metabolism , Basolateral Nuclear Complex/metabolism , Comorbidity , Semaphorins/metabolism
2.
Arch Pharm (Weinheim) ; 354(7): e2000453, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33872422

ABSTRACT

Inspired by the structures of donepezil and rivastigmine, a novel series of indanone-carbamate hybrids was synthesized using the pharmacophore hybridization-based design strategy, and their biological activities toward acetylcholinesterase (AChE) and butyrylcholinesterase were evaluated. Among the synthesized compounds, 4d and 4b showed the highest AChE inhibitory activities with IC50 values in the micromolar range (compound 4d: IC50 = 3.04 µM; compound 4b: IC50 = 4.64 µM). Moreover, the results of the Aß1-40 aggregation assay revealed that compound 4b is a potent Aß1-40 aggregation inhibitor. The kinetics of AChE enzymatic activity in the presence of 4b was investigated, and the results were indicative of a reversible partial noncompetitive type of inhibition. A molecular docking study was conducted to determine the possible allosteric binding mode of 4b with the enzyme. The allosteric nature of AChE inhibition by these compounds provides the opportunity for the design of subtype-selective enzyme inhibitors. The presented indanone-carbamate scaffold can be structurally modified and optimized through medicinal chemistry-based approaches for designing novel multitargeted anti-Alzheimer agents.


Subject(s)
Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Indans/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Animals , Butyrylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Carbamates/chemistry , Chemistry, Pharmaceutical/methods , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Drug Design , Electrophorus , Horses , Indans/chemical synthesis , Indans/chemistry , Inhibitory Concentration 50 , Molecular Docking Simulation , Structure-Activity Relationship
3.
Daru ; 29(1): 23-38, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33420969

ABSTRACT

PURPOSE: Alzheimer's disease (AD) is a multifaceted neurodegenerative disease. To target simultaneously multiple pathological processes involved in AD, natural-origin compounds with unique characteristics are promising scaffolds to develop novel multi-target compounds in the treatment of different neurodegenerative disease, especially AD. In this study, novel chromone-lipoic acid hybrids were prepared to find a new multifunctional lead structure for the treatment of AD. METHODS: Chromone-lipoic acid hybrids were prepared through click reaction and their neuroprotection and anticholinesterase activity were fully evaluated. The anti-amyloid aggregation, antioxidant and metal-chelation activities of the best compound were also investigated by standard methods to find a new multi-functional agent against AD. RESULTS: The primary biological screening demonstrated that all compounds had significant neuroprotection activity against H2O2-induced cell damage in PC12 cells. Compound 19 as the most potent butyrylcholinesterase (BuChE) inhibitor (IC50 = 7.55 µM) having significant neuroprotection activity as level as reference drug was selected for further biological evaluations. Docking and kinetic studies revealed non-competitive mixed-type inhibition of BuChE by compound 19. It could significantly reduce formation of the intracellular reactive oxygen species (ROS) and showed excellent reducing power (85.57 mM Fe+2), comparable with quercetin and lipoic acid. It could also moderately inhibit Aß aggregation and selectively chelate with copper ions in 2:1 M ratio. CONCLUSION: Compound 19 could be considered as a hopeful multifunctional agent for the further development gainst AD owing to the acceptable neuroprotective and anti-BuChE activity, moderate anti-Aß aggregation activity, outstanding antioxidant activity as well as selective copper chelation ability. A new chromone-lipoic acid hybrid was synthesized as anti-Alzheimer agent with BuChE inhibitory activity, anti-Aß aggregation, metal-chelation and antioxidant properties.


Subject(s)
Antioxidants/pharmacology , Chelating Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Chromones/pharmacology , Neuroprotective Agents/pharmacology , Thioctic Acid/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/chemistry , Animals , Antioxidants/chemistry , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cell Survival/drug effects , Chelating Agents/chemistry , Cholinesterase Inhibitors/chemistry , Chromones/chemistry , Copper/chemistry , Neuroprotective Agents/chemistry , PC12 Cells , Peptide Fragments/chemistry , Rats , Reactive Oxygen Species/metabolism , Thioctic Acid/chemistry
4.
Front Chem ; 9: 810233, 2021.
Article in English | MEDLINE | ID: mdl-35127652

ABSTRACT

A novel series of coumarin derivatives linked to the N-benzyl triazole group were synthesized and evaluated against 15-lipoxygenase (15-LOX), and acetyl- and butyrylcholinesterase (AChE and BuChE) to find the most potent derivative against Alzheimer's disease (AD). Most of the compounds showed weak to moderate activity against ChEs. Among the most active BuChE and 15-LOX inhibitors, 8l and 8n exhibited an excellent neuroprotective effect, higher than the standard drug (quercetin) on the PC12 cell model injured by H2O2 and significantly reduced aggregation of amyloid Aß1-42, with potencies of 1.44 and 1.79 times higher than donepezil, respectively. Compound 8l also showed more activity than butylated hydroxytoluene (BHT) as the reference antioxidant agent in reducing the levels of H2O2 activated by amyloid ß in BV2 microglial cells. Kinetic and ligand-enzyme docking studies were also performed for better understanding of the mode of interaction between the best BuChE inhibitor and the enzyme. Considering the acceptable BuChE and 15-LOX inhibition activities as well as significant neuroprotection, and anti-amyloid aggregation activities, 8l and 8n could be considered as potential MTDLs for further modification and studies against AD.

5.
Article in English | MEDLINE | ID: mdl-32109506

ABSTRACT

Chronic pain produces psychologic distress, which often leads to mood disorders such as depression. Co-existing chronic pain and depression pose a serious socio-economic burden and result in disability affecting millions of individuals, which urges the development of treatment strategies targeting this comorbidity. Ketamine, a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, is shown to be efficient in treating both pain and depression-related symptoms. However, the molecular characteristics of its role in chronic pain-induced depression remain largely unexplored. Hence, we studied the behavioral and molecular effects of a single systemic administration of ketamine (15 mg/kg, i.p.) on mechanical hypersensitivity and depressive-like consequences of chronic neuropathic pain. We showed that ketamine transiently alleviated mechanical hypersensitivity (lasting <24 h), while its antidepressant effect was observed even 72 h after administration. In addition, ketamine normalized the upregulated expression of the mitogen activated protein kinase (MAPK) phosphatase 1 (MKP-1) and the downregulated phosphorylation of extracellular signal-regulated kinase (pERK) in the anterior cingulate cortex (ACC) of mice displaying neuropathic pain-induced depressive-like behaviors. This effect of ketamine on the MKP-1 was first detected 30 min after the ketamine administration and persisted until up to 72 h. Altogether, these findings provide insight into the behavioral and molecular changes associated with single ketamine administration in the comorbidity of chronic pain and depression.


Subject(s)
Antidepressive Agents/therapeutic use , Chronic Pain/drug therapy , Depression/drug therapy , Ketamine/therapeutic use , MAP Kinase Signaling System/drug effects , Animals , Antidepressive Agents/pharmacology , Chronic Pain/enzymology , Depression/enzymology , Ketamine/pharmacology , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Pain Measurement/drug effects , Pain Measurement/methods , Time Factors
6.
Bioorg Chem ; 91: 103164, 2019 10.
Article in English | MEDLINE | ID: mdl-31398601

ABSTRACT

Multi-Target approach is particularly promising way to drug discovery against Alzheimer's disease. In the present study, we synthesized a series of compounds comprising the carbazole backbone linked to the benzyl piperazine, benzyl piperidine, pyridine, quinoline, or isoquinoline moiety through an aliphatic linker and evaluated as cholinesterase inhibitors. The synthesized compounds showed IC50 values of 0.11-36.5 µM and 0.02-98.6 µM against acetyl- and butyrylcholinesterase (AChE and BuChE), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 3s could bind effectively to the peripheral anionic binding site (PAS) and anionic site of the enzyme with mixed-type inhibition. Compound 3s was the most potent compound against AChE and BuChE and showed acceptable inhibition potency for self- and AChE-induced Aß1-42 aggregation. Moreover, compound 3s could significantly protect PC12 cells against H2O2-induced toxicity. The results suggested that the compounds 3s could be considered as a promising multi-functional agent for further drug discovery development against Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/chemistry , Antioxidants/pharmacology , Carbazoles/chemistry , Cholinesterase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Acetylcholinesterase/chemistry , Alzheimer Disease/pathology , Amyloid beta-Peptides/drug effects , Animals , Antioxidants/chemistry , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Neuroprotective Agents/chemistry , Oxidative Stress/drug effects , PC12 Cells , Rats
7.
Medchemcomm ; 10(6): 1018-1026, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31304000

ABSTRACT

A novel series of 2-pyrazoline derivatives were designed, synthesized, and evaluated for cholinesterase (ChE) inhibitory, Aß anti-aggregating and neuroprotective activities. Among these, 3d, 3e, 3g, and 3h were established as the most potent and selective BChE inhibitors (IC50 = 0.5-3.9 µM), while 3f presented dual inhibitory activity against BChE and AChE (IC50 = 6.0 and 6.5 µM, respectively). Kinetic analyses revealed that 3g is a partial noncompetitive inhibitor of BChE (Ki = 2.22 µM), while 3f exerts competitive inhibition on AChE (Ki = 0.63 µM). The active compounds were subsequently screened for further assessments. 3f, 3g and 3h reduced Aß1-42 aggregation levels significantly (72.6, 83.4 and 63.4%, respectively). In addition, 3f demonstrated outstanding neuroprotective effects against Aß1-42-induced and H2O2-induced cell toxicity (95.6 and 93.6%, respectively). Molecular docking studies were performed with 3g and 3f to investigate binding interactions inside the active sites of BChE and AChE. Compounds 3g and 3f might have the multifunctional potential for use against Alzheimer's disease.

8.
Future Med Chem ; 11(10): 1119-1136, 2019 05.
Article in English | MEDLINE | ID: mdl-31280674

ABSTRACT

Aim: Mesenchymal-epithelial transition factor (c-Met)/HGF overactivation is involved in diverse human cancers. Materials & methods: Herein, we report the synthesis and biological evaluation of thiomethylpyridine-linked triazolotriazines as c-Met kinase inhibitors. Results: Compounds 10b and 11e were more potent than crizotinib on HepG2 cells with IC50 values of 0.74 and 0.71 µM in the MTT assay, respectively. Interestingly, all of the target compounds displayed IC50 values in the range of 3.9-11.1 nM in the c-Met kinase inhibition assay which were lower than the value for crizotinib (11.1 nM). Conclusion: Target compound 10b can be considered as a leading drug candidate due to its lower IC50 values than crizotinib in both HGF-induced proliferation and c-Met kinase inhibition assays.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Triazines/chemistry , Triazines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Design , Drug Discovery , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship
9.
Chem Biodivers ; 16(5): e1800436, 2019 May.
Article in English | MEDLINE | ID: mdl-30957958

ABSTRACT

Two series of novel coumarin derivatives, substituted at 3 and 7 positions with aminoalkoxy groups, are synthesized, characterized, and screened. The effect of amine substituents and the length of cross-linker are investigated in acetyl- and butyrylcholinesterase (AChE and BuChE) inhibition. Target compounds show moderate to potent inhibitory activities against AChE and BuChE. 3-(3,4-Dichlorophenyl)-7-[4-(diethylamino)butoxy]-2H-chromen-2-one (4y) is identified as the most potent compound against AChE (IC50 =0.27 µm). Kinetic and molecular modeling studies affirmed that compound 4y works in a mixed-type way and interacts simultaneously with the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. In addition, compound 4y blocks ß-amyloid (Aß) self-aggregation with a ratio of 44.11 % at 100 µm and significantly protects PC12 cells from H2 O2 -damage in a dose-dependent manner.


Subject(s)
Coumarins/chemistry , Ligands , Neuroprotective Agents/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Animals , Apoptosis/drug effects , Binding Sites , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Catalytic Domain , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Coumarins/pharmacology , Coumarins/therapeutic use , Humans , Hydrogen Peroxide/toxicity , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , PC12 Cells , Rats , Structure-Activity Relationship
10.
Iran J Pharm Res ; 18(3): 1288-1298, 2019.
Article in English | MEDLINE | ID: mdl-32641939

ABSTRACT

Alzheimer's disease (AD) is a neuroinflammatory based pathologic state in which ß-amyloid aggregates are major devastating agents. In this study, a series of 2-hydroxyiminoethanones were synthesized and evaluated as anti-inflammatory in carrageenan and formalin tests and inhibitors of ß-amyloid aggregation. Compounds 1-10b were synthesized through a two-step reaction. Results: Compounds 1-5b showed more ß-amyloid disaggregation ability than reference drugs rifampicin and donepezil and compound 2b was the best compound in this series and could reduce the extent of amyloid aggregation to 50.9%. Interestingly, compounds 1b and 3b showed significant anti-inflammatory activity in carrageenan-induced paw edema compared to control group and equivalent to the reference drug indomethacin. 2-Hydeoxyiminoethanones are privileged scaffold for further drug research and development as anti-neuroinflammatory and neuroprotective agents.

11.
Bioorg Chem ; 83: 559-568, 2019 03.
Article in English | MEDLINE | ID: mdl-30471578

ABSTRACT

A novel series of benzylpyridinium-based benzoheterocycles (benzimidazole, benzoxazole or benzothiazole) were designed as potent acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The title compounds 4a-q were conveniently synthesized via condensation reaction of 1,2-phenylenediamine, 2-aminophenol or 2-aminothiophenol with pyridin-4-carbalehyde, followed by N-benzylation using various benzyl halides. The results of in vitro biological assays revealed that most of them, especially 4c and 4g, had potent anticholinesterase activity comparable or more potent than reference drug, donepezil. The kinetic study demonstrated that the representative compound 4c inhibits AChE in competitive manner. According to the ligand-enzyme docking simulation, compound 4c occupied the active site at the vicinity of catalytic triad. The compounds 4c and 4g were found to be inhibitors of Aß self-aggregation as well as AChE-induced Aß aggregation. Meanwhile, these compounds could significantly protect PC12 cells against H2O2-induced injury and showed no toxicity against HepG2 cells. As multi-targeted structures, compounds 4c and 4g could be considered as promising candidate for further lead developments to treat Alzheimer's disease.


Subject(s)
Heterocyclic Compounds, 2-Ring/pharmacology , Neuroprotective Agents/pharmacology , Pyridinium Compounds/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/drug effects , Amyloid beta-Peptides/metabolism , Animals , Butyrylcholinesterase/metabolism , Cell Line, Tumor , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/toxicity , Drug Design , Electrophorus , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/metabolism , Heterocyclic Compounds, 2-Ring/toxicity , Horses , Humans , Hydrogen Peroxide/pharmacology , Kinetics , Molecular Docking Simulation , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/metabolism , Neuroprotective Agents/toxicity , Oxidative Stress/drug effects , Peptide Fragments/drug effects , Peptide Fragments/metabolism , Protein Binding , Protein Multimerization/drug effects , Pyridinium Compounds/chemical synthesis , Pyridinium Compounds/metabolism , Pyridinium Compounds/toxicity , Rats , Torpedo
12.
J Biochem Mol Toxicol ; : e22233, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30238673

ABSTRACT

Bisphenol A (BPA) is an endocrine disruptor chemical, which is commonly used in everyday products. Adverse effects of its exposure are reported even at picomolar doses. Effects of picomolar and nanomolar concentrations of BPA on cytotoxicity, nitric oxide (NO) levels, acetylcholinesterase (AChE) gene expression and activity, and tumor necrosis factor-α (TNF-α) and caspase-8 levels were determined in SH-SY5Y cells. The current study reveals that low-dose BPA treatment induced cytotoxicity, NO, and caspase-8 levels in SH-SY5Y cells. We also evaluated the mechanism underlying BPA-induced cell death. Ours is the first report that receptor-interacting serine/threonine-protein kinase 1-mediated necroptosis is induced by nanomolar BPA treatment in SH-SY5Y cells. This effect is mediated by altered AChE and decreased TNF-α levels, which result in an apoptosis-necroptosis switch. Moreover, our study reveals that BPA is an activator of AChE.

13.
Eur J Med Chem ; 152: 600-614, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29763808

ABSTRACT

A novel series of coumarin-lipoic acid conjugates were synthesized via cycloaddition click reaction to find out new multi-target-directed ligands (MTDLs) for treatment of Alzheimer's disease (AD). All of synthesized compounds were screened for neuroprotective and anti-cholinesterase activities. Based on primary screening, two compounds (5 and 11) were subjected to further biological evaluations. In particular, compound 11 which was the most potent AChE inhibitor showed good inhibitory effect on Aß-aggregation and intracellular ROS (reactive oxygen species) formation, as well as the ability of selective bio-metal chelation and neuroprotection against H2O2- and Aß1-42-induced cytotoxicity. In the light of these results, the applied hybridization approach introduced new promising lead compound with desired multifunctional properties, being useful in the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Coumarins/pharmacology , Drug Design , Thioctic Acid/pharmacology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Cell Survival/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterases/metabolism , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Humans , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Ligands , Molecular Docking Simulation , Molecular Structure , PC12 Cells , Protein Aggregates/drug effects , Rats , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Thioctic Acid/chemical synthesis , Thioctic Acid/chemistry
14.
Bioorg Chem ; 79: 223-234, 2018 09.
Article in English | MEDLINE | ID: mdl-29775948

ABSTRACT

New series of triazole-containing 3-phenylcoumarin-lipoic acid conjugates were designed as multi-functional agents for treatment of Alzheimer's disease. The target compounds 4a-o were synthesized via the azide-alkyne cycloaddition reaction and their biological activities were primarily evaluated in terms of neuroprotection against H2O2-induced cell death in PC12 cells and AChE/BuChE inhibition. The promising compounds 4j and 4i containing four carbons spacer were selected for further biological evaluations. Based on the obtained results, the benzocoumarin derivative 4j with IC50 value of 7.3 µM was the most potent AChE inhibitor and displayed good inhibition toward intracellular reactive oxygen species (ROS). This compound with antioxidant and metal chelating ability showed also protective effect on cell injury induced by Aß1-42 in SH-SY5Y cells. Although the 8-methoxycoumarin analog 4i was slightly less active than 4j against AChE, but displayed higher protection ability against H2O2-induced cell death in PC12 and could significantly block Aß-aggregation. The results suggested that the prototype compounds 4i and 4j might be promising multi-functional agents for the further development of the disease-modifying treatments of Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Coumarins/pharmacology , Neuroprotective Agents/pharmacology , Thioctic Acid/pharmacology , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Cell Line, Tumor , Coumarins/chemical synthesis , Coumarins/chemistry , Coumarins/therapeutic use , Dose-Response Relationship, Drug , Humans , Hydrogen Peroxide/pharmacology , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , PC12 Cells , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Protein Aggregates/drug effects , Rats , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Thioctic Acid/chemical synthesis , Thioctic Acid/chemistry , Thioctic Acid/therapeutic use
15.
Bioorg Chem ; 72: 208-214, 2017 06.
Article in English | MEDLINE | ID: mdl-28478328

ABSTRACT

The present study describes the synthesis, pharmacological evaluation (BChE/AChE inhibition, Aß antiaggregation, and neuroprotective effects), and molecular modeling studies of novel 2-[4-(4-substitutedpiperazin-1-yl)phenyl]benzimidazole derivatives. The alkyl-substituted derivatives exhibited selective inhibition on BChE with varying efficiency. Compounds 3b and 3d were found to be the most potent inhibitors of BChE with IC50 values of 5.18 and 5.22µM, respectively. The kinetic studies revealed that 3b is a partial non-competitive BChE inhibitor. Molecular modeling studies also showed that the alkyl-substituted derivatives were able to reach the catalytic anionic site of the BChE. The compounds with an inhibitory effect on BChE were subsequently screened for their Aß antiaggregating and neuroprotective activities. Compounds 3a and 3b exerted a potential neuroprotective effect against H2O2 and Aß-induced cytotoxicity in SH-SY5Y cells. Collectively, 3b was found as the most promising compound for the development of multi-target directed ligands against Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Benzimidazoles/pharmacology , Cholinesterase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...