Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biophys J ; 122(1): 168-179, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36352784

ABSTRACT

The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR's function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E. coli membranes and synthetic liposomes. Compared with the monomers, the photocycle kinetics of PR oligomers is ∼2 and ∼4.5 times slower for transitions between the K and M and the M and N photointermediates, respectively, indicating that oligomerization significantly slows PR's rate of proton transport in liposomes. In contrast, the apparent pKa of the key proton acceptor residue D97 (pKaD97) of liposome-embedded PR persists at 6.2-6.6, regardless of cross-protomer modulation of D97, suggesting that the liposome environment helps maintain PR's functional activity at neutral pH. By comparison, when extracted directly from E. coli membranes into styrene-maleic acid lipid particles, the pKaD97 of monomer-enriched E50Q PR drastically increases to 8.9, implying that there is a very low active PR population at neutral pH to engage in PR's photocycle. These findings demonstrate that oligomerization impacts PR's photocycle kinetics, while lipid-based membrane mimetics strongly affect PR's active population via different mechanisms.


Subject(s)
Escherichia coli , Liposomes , Protons , Rhodopsins, Microbial/chemistry , Lipids
2.
J Mol Biol ; 427(6 Pt B): 1278-1290, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25597999

ABSTRACT

The plasma membrane is the crucial interface between the cell and its exterior, packed with embedded proteins experiencing simultaneous protein-protein and protein-membrane interactions. A prominent example of cell membrane complexity is the assembly of transmembrane proteins into oligomeric structures, with potential functional consequences that are not well understood. From the study of proteorhodopsin (PR), a prototypical seven-transmembrane light-driven bacterial proton pump, we find evidence that the inter-protein interaction modulated by self-association yields functional changes observable from the protein interior. We also demonstrate that the oligomer is likely a physiologically relevant form of PR, as crosslinking of recombinantly expressed PR reveals an oligomeric population within the Escherichia coli membrane (putatively hexameric). Upon chromatographic isolation of oligomeric and monomeric PR in surfactant micelles, the oligomer exhibits distinctly different optical absorption properties from monomeric PR, as reflected in a prominent decrease in the pKa of the primary proton acceptor residue (D97) and slowing of the light-driven conformational change. These functional effects are predominantly determined by specific PR-PR contacts over nonspecific surfactant interactions. Interestingly, varying the surfactant type alters the population of oligomeric states and the proximity of proteins within an oligomer, as determined by sparse electron paramagnetic resonance distance measurements. Nevertheless, the dynamic surfactant environment retains the key function-tuning property exerted by oligomeric contacts. A potentially general design principle for transmembrane protein function emerges from this work, one that hinges on specific oligomeric contacts that can be modulated by protein expression or membrane composition.


Subject(s)
Rhodopsin/chemistry , Rhodopsin/metabolism , Cell Membrane/metabolism , Cross-Linking Reagents/pharmacology , Electron Spin Resonance Spectroscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation/genetics , Protein Multimerization , Rhodopsin/genetics , Rhodopsins, Microbial , Spin Labels , Surface-Active Agents/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL