Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Neuroendocrinology ; 113(12): 1262-1282, 2023.
Article in English | MEDLINE | ID: mdl-36075192

ABSTRACT

INTRODUCTION: Flame retardants (FRs) are common bodily and environmental pollutants, creating concern about their potential toxicity. We and others have found that the commercial mixture FireMaster® 550 (FM 550) or its individual brominated (BFR) and organophosphate ester (OPFR) components are potential developmental neurotoxicants. Using Wistar rats, we previously reported that developmental exposure to FM 550 or its component classes produced sex- and compound-specific effects on adult socioemotional behaviors. The underlying mechanisms driving the behavioral phenotypes are unknown. METHODS: To further mechanistic understanding, here we conducted transcriptomics in parallel with a novel lipidomics approach using cortical tissues from newborn siblings of the rats in the published behavioral study. Inclusion of lipid composition is significant because it is rarely examined in developmental neurotoxicity studies. Pups were gestationally exposed via oral dosing to the dam to FM 550 or the BFR or OPFR components at environmentally relevant doses. RESULTS: The neonatal cortex was highly sexually dimorphic in lipid and transcriptome composition, and males were more significantly impacted by FR exposure. Multiple adverse modes of action for the BFRs and OPFRs on neurodevelopment were identified, with the OPFRs being more disruptive than the BFRs via multiple mechanisms including dysregulation of mitochondrial function and disruption of cholinergic and glutamatergic systems. Disrupted mitochondrial function by environmental factors has been linked to a higher risk of autism spectrum disorders and neurodegenerative disorders. Impacted lipid classes included ceramides, sphingomyelins, and triacylglycerides. Robust ceramide upregulation in the OPFR females could suggest a heightened risk of brain metabolic disease. CONCLUSIONS: This study reveals multiple mechanisms by which the components of a common FR mixture are developmentally neurotoxic and that the OPFRs may be the compounds of greatest concern.


Subject(s)
Flame Retardants , Polybrominated Biphenyls , Male , Female , Rats , Animals , Rats, Wistar , Organophosphates/toxicity , Flame Retardants/toxicity , Lipids
2.
Am J Hum Genet ; 109(10): 1814-1827, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36167069

ABSTRACT

Ischemic stroke, caused by vessel blockage, results in cerebral infarction, the death of brain tissue. Previously, quantitative trait locus (QTL) mapping of cerebral infarct volume and collateral vessel number identified a single, strong genetic locus regulating both phenotypes. Additional studies identified RAB GTPase-binding effector protein 2 (Rabep2) as the casual gene. However, there is yet no evidence that variation in the human ortholog of this gene plays any role in ischemic stroke outcomes. We established an in vivo evaluation platform in mice by using adeno-associated virus (AAV) gene replacement and verified that both mouse and human RABEP2 rescue the mouse Rabep2 knockout ischemic stroke volume and collateral vessel phenotypes. Importantly, this cross-species complementation enabled us to experimentally investigate the functional effects of coding sequence variation in human RABEP2. We chose four coding variants from the human population that are predicted by multiple in silico algorithms to be damaging to RABEP2 function. In vitro and in vivo analyses verify that all four led to decreased collateral vessel connections and increased infarct volume. Thus, there are naturally occurring loss-of-function alleles. This cross-species approach will expand the number of targets for therapeutics development for ischemic stroke.


Subject(s)
Ischemic Stroke , Alleles , Animals , Brain/metabolism , Chromosome Mapping , Humans , Mice , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
3.
Front Neurosci ; 15: 705160, 2021.
Article in English | MEDLINE | ID: mdl-34408625

ABSTRACT

Although studies with inbred strains of mice have shown that infarct size is largely determined by the extent of collateral vessel connections between arteries in the brain that enable reperfusion of the ischemic territory, we have identified strain pairs that do not vary in this vascular phenotype, but which nonetheless exhibit large differences in infarct size. In this study we performed quantitative trait locus (QTL) mapping in mice from an intercross between two such strains, WSB/EiJ (WSB) and C57BL/6J (B6). This QTL mapping revealed only one neuroprotective locus on Chromosome 8 (Chr 8) that co-localizes with a neuroprotective locus we mapped previously from F2 progeny between C3H/HeJ (C3H) and B6. The allele-specific phenotypic effect on infarct volume at the genetic region identified by these two independent mappings was in the opposite direction of the parental strain phenotype; namely, the B6 allele conferred increased susceptibility to ischemic infarction. Through two reciprocal congenic mouse lines with either the C3H or B6 background at the Chr 8 locus, we verified the neuroprotective effects of this genetic region that modulates infarct volume without any effect on the collateral vasculature. Additionally, we surveyed non-synonymous coding SNPs and performed RNA-sequencing analysis to identify potential candidate genes within the genetic interval. Through these approaches, we suggest new genes for future mechanistic studies of infarction following ischemic stroke, which may represent novel gene/protein targets for therapeutic development.

4.
Genetics ; 216(2): 585-597, 2020 10.
Article in English | MEDLINE | ID: mdl-32817010

ABSTRACT

Hybrid male sterility (HMS) contributes to reproductive isolation commonly observed among house mouse (Mus musculus) subspecies, both in the wild and in laboratory crosses. Incompatibilities involving specific Prdm9 alleles and certain Chromosome (Chr) X genotypes are known determinants of fertility and HMS, and previous work in the field has demonstrated that genetic background modifies these two major loci. We constructed hybrids that have identical genotypes at Prdm9 and identical X chromosomes, but differ widely across the rest of the genome. In each case, we crossed female PWK/PhJ mice representative of the M. m. musculus subspecies to males from a classical inbred strain representative of M. m. domesticus: 129S1/SvImJ, A/J, C57BL/6J, or DBA/2J. We detected three distinct trajectories of fertility among the hybrids using breeding experiments. The PWK129S1 males were always infertile. PWKDBA2 males were fertile, despite their genotypes at the major HMS loci. We also observed age-dependent changes in fertility parameters across multiple genetic backgrounds. The PWKB6 and PWKAJ males were always infertile before 12 weeks and after 35 weeks. However, some PWKB6 and PWKAJ males were transiently fertile between 12 and 35 weeks. This observation could resolve previous contradictory reports about the fertility of PWKB6. Taken together, these results point to multiple segregating HMS modifier alleles, some of which have age-related modes of action. The ultimate identification of these alleles and their age-related mechanisms will advance understanding both of the genetic architecture of HMS and of how reproductive barriers are maintained between house mouse subspecies.


Subject(s)
Aging/physiology , Genetic Background , Hybridization, Genetic , Infertility, Male/genetics , Aging/genetics , Animals , Female , Genetic Loci , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Multifactorial Inheritance
5.
Genetics ; 213(3): 1079-1092, 2019 11.
Article in English | MEDLINE | ID: mdl-31488517

ABSTRACT

To identify genes involved in cerebral infarction, we have employed a forward genetic approach in inbred mouse strains, using quantitative trait loci (QTL) mapping for cerebral infarct volume after middle cerebral artery occlusion. We had previously observed that infarct volume is inversely correlated with cerebral collateral vessel density in most strains. In this study, we expanded the pool of allelic variation among classical inbred mouse strains by utilizing the eight founder strains of the Collaborative Cross and found a wild-derived strain, WSB/EiJ, that breaks this general rule that collateral vessel density inversely correlates with infarct volume. WSB/EiJ and another wild-derived strain, CAST/EiJ, show the highest collateral vessel densities of any inbred strain, but infarct volume of WSB/EiJ mice is 8.7-fold larger than that of CAST/EiJ mice. QTL mapping between these strains identified four new neuroprotective loci modulating cerebral infarct volume while not affecting collateral vessel phenotypes. To identify causative variants in genes, we surveyed nonsynonymous coding SNPs between CAST/EiJ and WSB/EiJ and found 96 genes harboring coding SNPs predicted to be damaging and mapping within one of the four intervals. In addition, we performed RNA-sequencing for brain tissue of CAST/EiJ and WSB/EiJ mice and identified 79 candidate genes mapping in one of the four intervals showing strain-specific differences in expression. The identification of the genes underlying these neuroprotective loci will provide new understanding of genetic risk factors of ischemic stroke, which may provide novel targets for future therapeutic intervention of human ischemic stroke.


Subject(s)
Infarction, Middle Cerebral Artery/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Female , Genetic Predisposition to Disease , Inbreeding , Male , Mice
6.
Sci Rep ; 8(1): 14706, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279419

ABSTRACT

Mus musculus is the only known species from which embryonic stem cells (ESC) can be isolated under conditions requiring only leukemia inhibitory factor (LIF). Other species are non-permissive in LIF media, and form developmentally primed epiblast stem cells (EpiSC) similar to cells derived from post-implantation, egg cylinders. To evaluate whether non-permissiveness extends to induced pluripotent stem cells (iPSC), we derived iPSC from the eight founder strains of the mouse Collaborative Cross. Two strains, NOD/ShiLtJ and the WSB/EiJ, were non-permissive, consistent with the previous classification of NOD/ShiLtJ as non-permissive to ESC derivation. We determined non-permissiveness is recessive, and that non-permissive genomes do not compliment. We overcame iPSC non-permissiveness by using GSK3B and MEK inhibitors with serum, a technique we termed 2iS reprogramming. Although used for ESC derivation, GSK3B and MEK inhibitors have not been used during iPSC reprogramming because they inhibit survival of progenitor differentiated cells. iPSC derived in 2iS are more transcriptionally similar to ESC than EpiSC, indicating that 2iS reprogramming acts to overcome genetic background constraints. Finally, of species tested for ESC or iPSC derivation, only some M. musculus strains are permissive under LIF culture conditions suggesting that this is an evolutionarily derived characteristic in the M. musculus lineage.


Subject(s)
Cellular Reprogramming/genetics , Evolution, Molecular , Mice/genetics , Transcription, Genetic , Animals , Cells, Cultured , Cellular Reprogramming/drug effects , Culture Media/metabolism , Culture Media/pharmacology , Female , Fibroblasts , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Induced Pluripotent Stem Cells , Leukemia Inhibitory Factor/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Male , Mice, Inbred Strains/genetics , Mouse Embryonic Stem Cells , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Sex Factors
8.
Mamm Genome ; 29(1-2): 168-181, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29353386

ABSTRACT

Studies of gene expression are common in toxicology and provide important clues to mechanistic understanding of adverse effects of chemicals. Most prior studies have been performed in a single strain or cell line; however, gene expression is heavily influenced by the genetic background, and these genotype-expression differences may be key drivers of inter-individual variation in response to chemical toxicity. In this study, we hypothesized that the genetically diverse Collaborative Cross mouse population can be used to gain insight and suggest mechanistic hypotheses for the dose- and genetic background-dependent effects of chemical exposure. This hypothesis was tested using a model liver toxicant trichloroethylene (TCE). Liver transcriptional responses to TCE exposure were evaluated 24 h after dosing. Transcriptomic dose-responses were examined for both TCE and its major oxidative metabolite trichloroacetic acid (TCA). As expected, peroxisome- and fatty acid metabolism-related pathways were among the most dose-responsive enriched pathways in all strains. However, nearly half of the TCE-induced liver transcriptional perturbation was strain-dependent, with abundant evidence of strain/dose interaction, including in the peroxisomal signaling-associated pathways. These effects were highly concordant between the administered TCE dose and liver levels of TCA. Dose-response analysis of gene expression at the pathway level yielded points of departure similar to those derived from the traditional toxicology studies for both non-cancer and cancer effects. Mapping of expression-genotype-dose relationships revealed some significant associations; however, the effects of TCE on gene expression in liver appear to be highly polygenic traits that are challenging to positionally map. This study highlights the usefulness of mouse population-based studies in assessing inter-individual variation in toxicological responses, but cautions that genetic mapping may be challenging because of the complexity in gene exposure-dose relationships.


Subject(s)
Genetics, Population , Transcription, Genetic/drug effects , Transcriptome/genetics , Trichloroethylene/toxicity , Animals , Dose-Response Relationship, Drug , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Mice , Trichloroacetic Acid/metabolism
9.
Genetics ; 206(2): 557-572, 2017 06.
Article in English | MEDLINE | ID: mdl-28592496

ABSTRACT

The goal of the Collaborative Cross (CC) project was to generate and distribute over 1000 independent mouse recombinant inbred strains derived from eight inbred founders. With inbreeding nearly complete, we estimated the extinction rate among CC lines at a remarkable 95%, which is substantially higher than in the derivation of other mouse recombinant inbred populations. Here, we report genome-wide allele frequencies in 347 extinct CC lines. Contrary to expectations, autosomes had equal allelic contributions from the eight founders, but chromosome X had significantly lower allelic contributions from the two inbred founders with underrepresented subspecific origins (PWK/PhJ and CAST/EiJ). By comparing extinct CC lines to living CC strains, we conclude that a complex genetic architecture is driving extinction, and selection pressures are different on the autosomes and chromosome X Male infertility played a large role in extinction as 47% of extinct lines had males that were infertile. Males from extinct lines had high variability in reproductive organ size, low sperm counts, low sperm motility, and a high rate of vacuolization of seminiferous tubules. We performed QTL mapping and identified nine genomic regions associated with male fertility and reproductive phenotypes. Many of the allelic effects in the QTL were driven by the two founders with underrepresented subspecific origins, including a QTL on chromosome X for infertility that was driven by the PWK/PhJ haplotype. We also performed the first example of cross validation using complementary CC resources to verify the effect of sperm curvilinear velocity from the PWK/PhJ haplotype on chromosome 2 in an independent population across multiple generations. While selection typically constrains the examination of reproductive traits toward the more fertile alleles, the CC extinct lines provided a unique opportunity to study the genetic architecture of fertility in a widely genetically variable population. We hypothesize that incompatibilities between alleles with different subspecific origins is a key driver of infertility. These results help clarify the factors that drove strain extinction in the CC, reveal the genetic regions associated with poor fertility in the CC, and serve as a resource to further study mammalian infertility.


Subject(s)
Chromosomes/genetics , Infertility, Male/genetics , Mice, Inbred Strains/genetics , Reproduction/genetics , Alleles , Animals , Chromosome Mapping , Crosses, Genetic , Female , Haplotypes , Inbreeding , Male , Mice , Phenotype , Quantitative Trait Loci/genetics , Sperm Motility/genetics
10.
Toxicol Sci ; 158(1): 48-62, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28369613

ABSTRACT

Background: Trichloroethylene (TCE) is a known carcinogen in humans and rodents. Previous studies of inter-strain variability in TCE metabolism were conducted in multi-strain panels of classical inbred mice with limited genetic diversity to identify gene-environment interactions associated with chemical exposure. Objectives: To evaluate inter-strain variability in TCE metabolism and identify genetic determinants that are associated with TCE metabolism and effects using Collaborative Cross (CC), a large panel of genetically diverse strains of mice. Methods: We administered a single oral dose of 0, 24, 80, 240, or 800 mg/kg of TCE to mice from 50 CC strains, and collected organs 24 h post-dosing. Levels of trichloroacetic acid (TCA), a major oxidative metabolite of TCE were measured in multiple tissues. Protein expression and activity levels of TCE-metabolizing enzymes were evaluated in the liver. Liver transcript levels of known genes perturbed by TCE exposure were also quantified. Genetic association mapping was performed on the acquired phenotypes. Results: TCA levels varied in a dose- and strain-dependent manner in liver, kidney, and serum. The variability in TCA levels among strains did not correlate with expression or activity of a number of enzymes known to be involved in TCE oxidation. Peroxisome proliferator-activated receptor alpha (PPARα)-responsive genes were found to be associated with strain-specific differences in TCE metabolism. Conclusions: This study shows that CC mouse population is a valuable tool to quantitatively evaluate inter-individual variability in chemical metabolism and to identify genes and pathways that may underpin population differences.


Subject(s)
Peroxisome Proliferator-Activated Receptors/metabolism , Trichloroethylene/pharmacokinetics , Trichloroethylene/toxicity , Alcohol Dehydrogenase/biosynthesis , Aldehyde Dehydrogenase/biosynthesis , Animals , Dose-Response Relationship, Drug , Enzyme Induction , Female , Gene-Environment Interaction , Kidney/drug effects , Liver/drug effects , Liver/enzymology , Liver/metabolism , Male , Mice , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptors/genetics , Quantitative Trait Loci , Species Specificity , Toxicokinetics , Trichloroethylene/blood
11.
G3 (Bethesda) ; 6(5): 1409-16, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26994290

ABSTRACT

Meiotic recombination is a genetic process that is critical for proper chromosome segregation in many organisms. Despite being fundamental for organismal fitness, rates of crossing over vary greatly between taxa. Both genetic and environmental factors contribute to phenotypic variation in crossover frequency, as do genotype-environment interactions. Here, we test the hypothesis that maternal age influences rates of crossing over in a genotypic-specific manner. Using classical genetic techniques, we estimated rates of crossing over for individual Drosophila melanogaster females from five strains over their lifetime from a single mating event. We find that both age and genetic background significantly contribute to observed variation in recombination frequency, as do genotype-age interactions. We further find differences in the effect of age on recombination frequency in the two genomic regions surveyed. Our results highlight the complexity of recombination rate variation and reveal a new role of genotype by maternal age interactions in mediating recombination rate.


Subject(s)
Crossing Over, Genetic , Drosophila melanogaster/genetics , Genetic Background , Models, Genetic , Animals , Female , Genetic Loci , Genome, Insect , Genomics/methods , Male , Meiosis/genetics , Recombination, Genetic
12.
G3 (Bethesda) ; 5(12): 2671-83, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26483008

ABSTRACT

Surveys of inbred strains of mice are standard approaches to determine the heritability and range of phenotypic variation for biomedical traits. In addition, they may lead to the identification of novel phenotypes and models of human disease. Surprisingly, male reproductive phenotypes are among the least-represented traits in the Mouse Phenome Database. Here we report the results of a broad survey of the eight founder inbred strains of both the Collaborative Cross (CC) and the Diversity Outbred populations, two new mouse resources that are being used as platforms for systems genetics and sources of mouse models of human diseases. Our survey includes representatives of the three main subspecies of the house mice and a mix of classical and wild-derived inbred strains. In addition to standard staples of male reproductive phenotyping such as reproductive organ weights, sperm counts, and sperm morphology, our survey includes sperm motility and the first detailed survey of testis histology. As expected for such a broad survey, heritability varies widely among traits. We conclude that although all eight inbred strains are fertile, most display a mix of advantageous and deleterious male reproductive traits. The CAST/EiJ strain is an outlier, with an unusual combination of deleterious male reproductive traits including low sperm counts, high levels of morphologically abnormal sperm, and poor motility. In contrast, sperm from the PWK/PhJ and WSB/EiJ strains had the greatest percentages of normal morphology and vigorous motility. Finally, we report an abnormal testis phenotype that is highly heritable and restricted to the WSB/EiJ strain. This phenotype is characterized by the presence of a large, but variable, number of vacuoles in at least 10% of the seminiferous tubules. The onset of the phenotype between 2 and 3 wk of age is temporally correlated with the formation of the blood-testis barrier. We speculate that this phenotype may play a role in high rates of extinction in the CC project and in the phenotypes associated with speciation in genetic crosses that use the WSB/EiJ strain as representative of the Mus muculus domesticus subspecies.


Subject(s)
Crosses, Genetic , Founder Effect , Quantitative Trait Loci , Quantitative Trait, Heritable , Reproduction/genetics , Animals , Female , Infertility, Male/genetics , Lactic Acid/biosynthesis , Male , Mice , Mice, Inbred Strains , Phenotype , Sperm Count , Sperm Motility , Spermatozoa/cytology , Spermatozoa/physiology , Testis/anatomy & histology , Testis/cytology , Testis/physiology
13.
PLoS Genet ; 11(10): e1005504, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26452100

ABSTRACT

New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations.


Subject(s)
Host-Pathogen Interactions , Inflammation/genetics , Severe Acute Respiratory Syndrome/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Animals , Disease Models, Animal , Disease Susceptibility , Humans , Inflammation/pathology , Inflammation/virology , Mice , Phenotype , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Virus Replication/genetics
14.
Toxicol Sci ; 148(2): 341-54, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26209558

ABSTRACT

Bisphenol A (BPA) is a high volume production chemical and has been identified as an endocrine disruptor, prompting concern that developmental exposure could impact brain development and behavior. Rodent and human studies suggest that early life BPA exposure may result in an anxious, hyperactive phenotype but results are conflicting and data from studies using multiple doses below the no-observed-adverse-effect level are limited. To address this, the present studies were conducted as part of the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program. The impact of perinatal BPA exposure (2.5, 25, or 2500 µg/kg body weight (bw)/day) on behaviors related to anxiety and exploratory activity was assessed in juvenile (prepubertal) and adult NCTR Sprague-Dawley rats of both sexes. Ethinyl estradiol (0.5 µg/kg bw/day) was used as a reference estrogen. Exposure spanned gestation and lactation with dams gavaged from gestational day 6 until birth and then the offspring gavaged directly through weaning (n = 12/sex/group). Behavioral assessments included open field, elevated plus maze, and zero maze. Anticipated sex differences in behavior were statistically identified or suggested in most cases. No consistent effects of BPA were observed for any endpoint, in either sex, at either age compared to vehicle controls; however, significant differences between BPA-exposed and ethinyl estradiol-exposed groups were identified for some endpoints. Limitations of this study are discussed and include suboptimal statistical power and low concordance across behavioral tasks. These data do not indicate BPA-related effects on anxiety or exploratory activity in these developmentally exposed rats.


Subject(s)
Anxiety/chemically induced , Behavior, Animal/drug effects , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Exploratory Behavior/drug effects , Neurotoxicity Syndromes/etiology , Phenols/toxicity , Age Factors , Animals , Anxiety/psychology , Dose-Response Relationship, Drug , Female , Gestational Age , Lactation , Male , Maternal Exposure/adverse effects , Motor Activity/drug effects , Neurotoxicity Syndromes/psychology , Pregnancy , Prenatal Exposure Delayed Effects , Rats, Sprague-Dawley , Risk Assessment , Sex Factors
16.
Nat Genet ; 47(4): 353-60, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25730764

ABSTRACT

Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. Effects from these variants influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect. We also observe two types of parent-of-origin effects, including classical imprinting and a new global allelic imbalance in expression favoring the paternal allele. We conclude that, as with humans, pervasive regulatory variation influences complex genetic traits in mice and provide a new resource toward understanding the genetic control of transcription in mammals.


Subject(s)
Alleles , Allelic Imbalance/genetics , Crosses, Genetic , Gene Expression , Genetic Speciation , Mice/genetics , Animals , Dosage Compensation, Genetic , Female , Humans , Male , Mice, Knockout , Phylogeny , Polymorphism, Single Nucleotide
17.
PLoS Genet ; 11(2): e1004850, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25679959

ABSTRACT

Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 - 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.


Subject(s)
DNA Copy Number Variations/genetics , Genomics , Inheritance Patterns/genetics , Meiosis/genetics , Alleles , Animals , Chromosomes/genetics , Crosses, Genetic , Female , Genotyping Techniques , Haplotypes/genetics , Male , Mice , Mutation
18.
Genetics ; 198(2): 735-45, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25114278

ABSTRACT

Allergic asthma is a complex disease characterized in part by granulocytic inflammation of the airways. In addition to eosinophils, neutrophils (PMN) are also present, particularly in cases of severe asthma. We sought to identify the genetic determinants of neutrophilic inflammation in a mouse model of house dust mite (HDM)-induced asthma. We applied an HDM model of allergic asthma to the eight founder strains of the Collaborative Cross (CC) and 151 incipient lines of the CC (preCC). Lung lavage fluid was analyzed for PMN count and the concentration of CXCL1, a hallmark PMN chemokine. PMN and CXCL1 were strongly correlated in preCC mice. We used quantitative trait locus (QTL) mapping to identify three variants affecting PMN, one of which colocalized with a QTL for CXCL1 on chromosome (Chr) 7. We used lung eQTL data to implicate a variant in the gene Zfp30 in the CXCL1/PMN response. This genetic variant regulates both CXCL1 and PMN by altering Zfp30 expression, and we model the relationships between the QTL and these three endophenotypes. We show that Zfp30 is expressed in airway epithelia in the normal mouse lung and that altering Zfp30 expression in vitro affects CXCL1 responses to an immune stimulus. Our results provide strong evidence that Zfp30 is a novel regulator of neutrophilic airway inflammation.


Subject(s)
Chemokine CXCL1/genetics , DNA-Binding Proteins/physiology , Gene Expression Regulation/immunology , Pneumonia/genetics , Transcription Factors/physiology , Animals , Chemokine CXCL1/metabolism , Gene Expression , Lung/immunology , Lung/pathology , Male , Mice, Transgenic , Neutrophil Infiltration , Quantitative Trait Loci , Trachea/immunology , Trachea/pathology
19.
Am J Respir Cell Mol Biol ; 51(3): 436-45, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24693920

ABSTRACT

Airway allergen exposure induces inflammation among individuals with atopy that is characterized by altered airway gene expression, elevated levels of T helper type 2 cytokines, mucus hypersecretion, and airflow obstruction. To identify the genetic determinants of the airway allergen response, we employed a systems genetics approach. We applied a house dust mite mouse model of allergic airway disease to 151 incipient lines of the Collaborative Cross, a new mouse genetic reference population, and measured serum IgE, airway eosinophilia, and gene expression in the lung. Allergen-induced serum IgE and airway eosinophilia were not correlated. We detected quantitative trait loci (QTL) for airway eosinophilia on chromosome (Chr) 11 (71.802-87.098 megabases [Mb]) and allergen-induced IgE on Chr 4 (13.950-31.660 Mb). More than 4,500 genes expressed in the lung had gene expression QTL (eQTL), the majority of which were located near the gene itself. However, we also detected approximately 1,700 trans-eQTL, and many of these trans-eQTL clustered into two regions on Chr 2. We show that one of these loci (at 147.6 Mb) is associated with the expression of more than 100 genes, and, using bioinformatics resources, fine-map this locus to a 53 kb-long interval. We also use the gene expression and eQTL data to identify a candidate gene, Tlcd2, for the eosinophil QTL. Our results demonstrate that hallmark allergic airway disease phenotypes are associated with distinct genetic loci on Chrs 4 and 11, and that gene expression in the allergically inflamed lung is controlled by both cis and trans regulatory factors.


Subject(s)
Bronchial Hyperreactivity/immunology , Hypersensitivity/metabolism , Lung/immunology , Animals , Antigens, Dermatophagoides/immunology , Dermatophagoides pteronyssinus/metabolism , Disease Models, Animal , Gene Expression Regulation , Genetics , Hypersensitivity/immunology , Immunoglobulin E/blood , Inflammation , Lung/metabolism , Male , Mice , Phenotype , Quantitative Trait Loci , Respiratory Hypersensitivity/immunology
20.
PLoS Pathog ; 9(2): e1003196, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23468633

ABSTRACT

Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss.


Subject(s)
Genetic Variation , Host-Pathogen Interactions/genetics , Influenza, Human/virology , Models, Genetic , Orthomyxoviridae Infections/virology , Rodent Diseases/virology , Animals , Crosses, Genetic , Female , Humans , Influenza A virus , Influenza, Human/genetics , Influenza, Human/pathology , Lung/pathology , Mice , Mice, Inbred Strains , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/pathology , Phenotype , Reassortant Viruses/genetics , Reassortant Viruses/pathogenicity , Recombination, Genetic , Rodent Diseases/genetics , Rodent Diseases/pathology , Species Specificity , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...