Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Ann Rheum Dis ; 82(5): 670-680, 2023 05.
Article in English | MEDLINE | ID: mdl-36653124

ABSTRACT

OBJECTIVES: Results from the SCOT (Scleroderma: Cyclophosphamide Or Transplantation) clinical trial demonstrated significant benefits of haematopoietic stem cell transplant (HSCT) versus cyclophosphamide (CTX) in patients with systemic sclerosis. The objective of this study was to test the hypothesis that transplantation stabilises the autoantibody repertoire in patients with favourable clinical outcomes. METHODS: We used a bead-based array containing 221 protein antigens to profile serum IgG autoantibodies in participants of the SCOT trial. RESULTS: Comparison of autoantibody profiles at month 26 (n=23 HSCT; n=22 CTX) revealed antibodies against two viral antigens and six self-proteins (SSB/La, CX3CL1, glycyl-tRNA synthetase (EJ), parietal cell antigen, bactericidal permeability-increasing protein and epidermal growth factor receptor (EGFR)) that were significantly different between treatment groups. Linear mixed model analysis identified temporal increases in antibody levels for hepatitis B surface antigen, CCL3 and EGFR in HSCT-treated patients. Eight of 32 HSCT-treated participants and one of 31 CTX-treated participants had temporally varying serum antibody profiles for one or more of 14 antigens. Baseline autoantibody levels against 20 unique antigens, including 9 secreted proteins (interleukins, IL-18, IL-22, IL-23 and IL-27), interferon-α2A, stem cell factor, transforming growth factor-ß, macrophage colony-stimulating factor and macrophage migration inhibitory factor were significantly higher in patients who survived event-free to month 54. CONCLUSIONS: Our results suggest that HSCT favourably alters the autoantibody repertoire, which remains virtually unchanged in CTX-treated patients. Although antibodies recognising secreted proteins are generally thought to be pathogenic, our results suggest a subset could potentially modulate HSCT in scleroderma.


Subject(s)
Hematopoietic Stem Cell Transplantation , Scleroderma, Systemic , Humans , Autoantibodies , Scleroderma, Systemic/pathology , Hematopoietic Stem Cell Transplantation/methods , Cyclophosphamide/therapeutic use , Transplantation, Autologous
2.
Nat Cell Biol ; 25(2): 351-365, 2023 02.
Article in English | MEDLINE | ID: mdl-36646791

ABSTRACT

The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.


Subject(s)
Embryo, Mammalian , Gene Expression Profiling , Humans , Cell Differentiation/genetics , Lung , Stem Cells
4.
Nature ; 590(7847): 649-654, 2021 02.
Article in English | MEDLINE | ID: mdl-33627808

ABSTRACT

The cell cycle, over which cells grow and divide, is a fundamental process of life. Its dysregulation has devastating consequences, including cancer1-3. The cell cycle is driven by precise regulation of proteins in time and space, which creates variability between individual proliferating cells. To our knowledge, no systematic investigations of such cell-to-cell proteomic variability exist. Here we present a comprehensive, spatiotemporal map of human proteomic heterogeneity by integrating proteomics at subcellular resolution with single-cell transcriptomics and precise temporal measurements of individual cells in the cell cycle. We show that around one-fifth of the human proteome displays cell-to-cell variability, identify hundreds of proteins with previously unknown associations with mitosis and the cell cycle, and provide evidence that several of these proteins have oncogenic functions. Our results show that cell cycle progression explains less than half of all cell-to-cell variability, and that most cycling proteins are regulated post-translationally, rather than by transcriptomic cycling. These proteins are disproportionately phosphorylated by kinases that regulate cell fate, whereas non-cycling proteins that vary between cells are more likely to be modified by kinases that regulate metabolism. This spatially resolved proteomic map of the cell cycle is integrated into the Human Protein Atlas and will serve as a resource for accelerating molecular studies of the human cell cycle and cell proliferation.


Subject(s)
Cell Cycle , Proteogenomics/methods , Single-Cell Analysis/methods , Transcriptome , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Lineage , Cell Proliferation , Humans , Interphase , Mitosis , Oncogene Proteins/metabolism , Phosphorylation , Protein Kinases/metabolism , Proteome/metabolism , Time Factors
5.
J Neuromuscul Dis ; 7(3): 231-246, 2020.
Article in English | MEDLINE | ID: mdl-32390640

ABSTRACT

BACKGROUND: Duchenne Muscular Dystrophy is a severe, incurable disorder caused by mutations in the dystrophin gene. The disease is characterized by decreased muscle function, impaired muscle regeneration and increased inflammation. In a clinical context, muscle deterioration, is evaluated using physical tests and analysis of muscle biopsies, which fail to accurately monitor the disease progression. OBJECTIVES: This study aims to confirm and asses the value of blood protein biomarkers as disease progression markers using one of the largest longitudinal collection of samples. METHODS: A total of 560 samples, both serum and plasma, collected at three clinical sites are analyzed using a suspension bead array platform to assess 118 proteins targeted by 250 antibodies in microliter amount of samples. RESULTS: Nine proteins are confirmed as disease progression biomarkers in both plasma and serum. Abundance of these biomarkers decreases as the disease progresses but follows different trajectories. While carbonic anhydrase 3, microtubule associated protein 4 and collagen type I alpha 1 chain decline rather constantly over time, myosin light chain 3, electron transfer flavoprotein A, troponin T, malate dehydrogenase 2, lactate dehydrogenase B and nestin plateaus in early teens. Electron transfer flavoprotein A, correlates with the outcome of 6-minutes-walking-test whereas malate dehydrogenase 2 together with myosin light chain 3, carbonic anhydrase 3 and nestin correlate with respiratory capacity. CONCLUSIONS: Nine biomarkers have been identified that correlate with disease milestones, functional tests and respiratory capacity. Together these biomarkers recapitulate different stages of the disorder that, if validated can improve disease progression monitoring.


Subject(s)
Disease Progression , Muscular Dystrophy, Duchenne/blood , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/physiopathology , Proteomics , Adolescent , Adult , Biomarkers/blood , Collagen Type I, alpha 1 Chain , Humans , Longitudinal Studies , Male , Young Adult
6.
J Cachexia Sarcopenia Muscle ; 11(2): 505-517, 2020 04.
Article in English | MEDLINE | ID: mdl-31881125

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a fatal disease for which no cure is available. Clinical trials have shown to be largely underpowered due to inter-individual variability and noisy outcome measures. The availability of biomarkers able to anticipate clinical benefit is highly needed to improve clinical trial design and facilitate drug development. METHODS: In this study, we aimed to appraise the value of protein biomarkers to predict prognosis and monitor disease progression or treatment outcome in patients affected by DMD. We collected clinical data and 303 blood samples from 157 DMD patients in three clinical centres; 78 patients contributed multiple blood samples over time, with a median follow-up time of 2 years. We employed linear mixed models to identify biomarkers that are associated with disease progression, wheelchair dependency, and treatment with corticosteroids and performed survival analysis to find biomarkers whose levels are associated with time to loss of ambulation. RESULTS: Our analysis led to the identification of 21 proteins whose levels significantly decrease with age and nine proteins whose levels significantly increase. Seven of these proteins are also differentially expressed in non-ambulant patients, and three proteins are differentially expressed in patients treated with glucocorticosteroids. Treatment with corticosteroids was found to partly counteract the effect of disease progression on two biomarkers, namely, malate dehydrogenase 2 (MDH2, P = 0.0003) and ankyrin repeat domain 2 (P = 0.0005); however, patients treated with corticosteroids experienced a further reduction on collagen 1 serum levels (P = 0.0003), especially following administration of deflazacort. A time to event analysis allowed to further support the use of MDH2 as a prognostic biomarker as it was associated with an increased risk of wheelchair dependence (P = 0.0003). The obtained data support the prospective evaluation of the identified biomarkers in natural history and clinical trials as exploratory biomarkers. CONCLUSIONS: We identified a number of serum biomarkers associated with disease progression, loss of ambulation, and treatment with corticosteroids. The identified biomarkers are promising candidate prognostic and surrogate biomarkers, which may support drug developers if confirmed in prospective studies. The serum levels of MDH2 are of particular interest, as they correlate with disease stage and response to treatment with corticosteroids, and are also associated with the risk of wheelchair dependency and pulmonary function.


Subject(s)
Biomarkers/blood , Early Detection of Cancer/methods , Malate Dehydrogenase/blood , Adolescent , Adult , Child , Child, Preschool , Disease Progression , Female , Humans , Longitudinal Studies , Male , Muscular Dystrophy, Duchenne , Prognosis , Young Adult
7.
Sci Signal ; 12(609)2019 11 26.
Article in English | MEDLINE | ID: mdl-31772123

ABSTRACT

The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immunoassays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.


Subject(s)
Databases, Protein , Proteome/metabolism , Proteomics , Humans
8.
Proc Natl Acad Sci U S A ; 116(34): 16955-16960, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31375628

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory, likely autoimmune disease of the central nervous system with a combination of genetic and environmental risk factors, among which Epstein-Barr virus (EBV) infection is a strong suspect. We have previously identified increased autoantibody levels toward the chloride-channel protein Anoctamin 2 (ANO2) in MS. Here, IgG antibody reactivity toward ANO2 and EBV nuclear antigen 1 (EBNA1) was measured using bead-based multiplex serology in plasma samples from 8,746 MS cases and 7,228 controls. We detected increased anti-ANO2 antibody levels in MS (P = 3.5 × 10-36) with 14.6% of cases and 7.8% of controls being ANO2 seropositive (odds ratio [OR] = 1.6; 95% confidence intervals [95%CI]: 1.5 to 1.8). The MS risk increase in ANO2-seropositive individuals was dramatic when also exposed to 3 known risk factors for MS: HLA-DRB1*15:01 carriage, absence of HLA-A*02:01, and high anti-EBNA1 antibody levels (OR = 24.9; 95%CI: 17.9 to 34.8). Reciprocal blocking experiments with ANO2 and EBNA1 peptides demonstrated antibody cross-reactivity, mapping to ANO2 [aa 140 to 149] and EBNA1 [aa 431 to 440]. HLA gene region was associated with anti-ANO2 antibody levels and HLA-DRB1*04:01 haplotype was negatively associated with ANO2 seropositivity (OR = 0.6; 95%CI: 0.5 to 0.7). Anti-ANO2 antibody levels were not increased in patients from 3 other inflammatory disease cohorts. The HLA influence and the fact that specific IgG production usually needs T cell help provides indirect evidence for a T cell ANO2 autoreactivity in MS. We propose a hypothesis where immune reactivity toward EBNA1 through molecular mimicry with ANO2 contributes to the etiopathogenesis of MS.


Subject(s)
Anoctamins , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Models, Immunological , Molecular Mimicry , Multiple Sclerosis , Anoctamins/genetics , Anoctamins/immunology , Autoantibodies/immunology , Cross Reactions/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/immunology , Female , HLA-A2 Antigen/immunology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Haplotypes , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/immunology , Humans , Immunoglobulin G/immunology , Male , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Risk Factors
9.
PLoS One ; 14(5): e0217208, 2019.
Article in English | MEDLINE | ID: mdl-31141529

ABSTRACT

Multiple sclerosis (MS) treatment options have improved significantly over the past decades, but the consequences of MS can still be devastating and the needs for monitoring treatment surveillance are considerable. In the current study we used affinity proteomics technology to identify potential biomarkers which could ultimately be used to as facilitate treatment decisions. We profiled the intra-individual changes in the levels of 59 target proteins using an antibody suspension bead array in serial plasma samples from 44 MS patients during treatment with natalizumab followed by fingolimod. Nine proteins showed decreasing plasma levels during natalizumab treatment, with PEBP1 and RTN3 displaying the most significant changes. Protein levels remained stable during fingolimod treatment for both proteins. The decreasing PEBP1 levels during natalizumab treatment could be validated using ELISA and replicated in an independent cohort. These results support the use of this technology as a high throughput method of identifying potentially useful biomarkers of MS treatment.


Subject(s)
Biomarkers/blood , Fingolimod Hydrochloride/therapeutic use , Immunologic Factors/therapeutic use , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/blood , Natalizumab/therapeutic use , Adult , Cohort Studies , Female , Humans , Male , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Proteomics
10.
Sci Immunol ; 4(34)2019 04 12.
Article in English | MEDLINE | ID: mdl-30979797

ABSTRACT

Autoimmune regulator (AIRE) mutations result in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome characterized by defective central T cell tolerance and the production of many autoantibodies targeting tissue-specific antigens and cytokines. By studying CD3- and AIRE-deficient patients, we found that lack of either T cells or AIRE function resulted in the peripheral accumulation of autoreactive mature naïve B cells. Proteomic arrays and Biacore affinity measurements revealed that unmutated antibodies expressed by these autoreactive naïve B cells recognized soluble molecules and cytokines including insulin, IL-17A, and IL-17F, which are AIRE-dependent thymic peripheral tissue antigens targeted by autoimmune responses in APECED. AIRE-deficient patients also displayed decreased frequencies of regulatory T cells (Tregs) that lacked common TCRß clones found instead in their conventional T cell compartment, thereby suggesting holes in the Treg TCR repertoire of these patients. Hence, AIRE-mediated T cell/Treg selection normally prevents the expansion of autoreactive naïve B cells recognizing peripheral self-antigens.


Subject(s)
Autoantibodies/immunology , Autoimmunity/genetics , B-Lymphocytes/immunology , Polyendocrinopathies, Autoimmune/immunology , Transcription Factors/deficiency , Adolescent , Autoantibodies/blood , Autoantibodies/metabolism , Autoantigens/immunology , B-Lymphocytes/metabolism , CD3 Complex/deficiency , CD3 Complex/genetics , CD3 Complex/immunology , Child , Child, Preschool , Cytokines/immunology , Female , Humans , Immune Tolerance/genetics , Lymphocyte Activation/genetics , Male , Middle Aged , Mutation , Polyendocrinopathies, Autoimmune/blood , Polyendocrinopathies, Autoimmune/genetics , Protein Array Analysis , Proteomics/methods , T-Lymphocytes, Regulatory/immunology , Transcription Factors/genetics , Transcription Factors/immunology , AIRE Protein
11.
Rheumatology (Oxford) ; 58(9): 1623-1633, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30892636

ABSTRACT

OBJECTIVES: The detection of anti-citrullinated peptide antibodies (ACPAs) is a serological hallmark of RA. Autoantibodies reactive with collagen type II (CII) are present in RA sera and synovial fluid and are potentially pathogenic. Here, we investigate the prevalence and specificity of the autoantibody responses to defined citrullinated cyclic peptides derived from CII in a China RA cohort. METHODS: Using bead-based multiplex assay, we examined the presence of autoantibodies binding to 54 cyclic 17-mer citrullinated CII peptides, encompassing all citrullinate epitopes in CII, and the corresponding unmodified peptides in 415 RA patients, in addition to 304 patients with OA. Furthermore, the autoantibody responses to a selected set of 10 cyclic citrullinated peptides were also examined in 203 healthy individuals. RESULTS: Autoantibody responses to cyclic citrullinated CII peptides were higher in RA patients as compared with OA patients or healthy individuals, whereas little or negligible antibody responses to cyclic unmodified CII peptides were observed. Interestingly, several novel citrullinated CII epitopes were identified. Antibodies to these novel citrullinated CII epitopes showed not only substantial overlapping reactivities but also had unique specificities. CONCLUSION: We found a high prevalence of autoantibodies against cyclic citrullinated CII in the sera of patients in a China RA cohort. The present study revealed heterogeneous binding patterns against novel citrullinated CII epitopes, which may help to stratify RA patients into different subgroups.


Subject(s)
Anti-Citrullinated Protein Antibodies/biosynthesis , Arthritis, Rheumatoid/immunology , Collagen Type II/immunology , Peptides, Cyclic/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Citrullinated Protein Antibodies/blood , Antigen-Antibody Reactions/immunology , Arthritis, Rheumatoid/diagnosis , Autoantigens/immunology , Biomarkers/blood , Case-Control Studies , Cluster Analysis , Female , Humans , Male , Middle Aged , Osteoarthritis/immunology , Peptides, Cyclic/chemistry , Sensitivity and Specificity , Sequence Analysis, Protein/methods , Young Adult
12.
Arthritis Rheumatol ; 71(2): 210-221, 2019 02.
Article in English | MEDLINE | ID: mdl-30152126

ABSTRACT

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) develop many years before the clinical onset of rheumatoid arthritis (RA). This study was undertaken to address the molecular basis of the specificity and cross-reactivity of ACPAs from patients with RA. METHODS: Antibodies isolated from RA patients were expressed as monoclonal chimeric antibodies with mouse Fc. These antibodies were characterized for glycosylation using mass spectrometry, and their cross-reactivity was assessed using Biacore and Luminex immunoassays. The crystal structures of the antigen-binding fragment (Fab) of the monoclonal ACPA E4 in complex with 3 different citrullinated peptides were determined using x-ray crystallography. The prevalence of autoantibodies reactive against 3 of the citrullinated peptides that also interacted with E4 was investigated by Luminex immunoassay in 2 Swedish cohorts of RA patients. RESULTS: Analysis of the crystal structures of a monoclonal ACPA from human RA serum in complex with citrullinated peptides revealed key residues of several complementarity-determining regions that recognized the citrulline as well as the neighboring peptide backbone, but with limited contact with the side chains of the peptides. The same citrullinated peptides were recognized by high titers of serum autoantibodies in 2 large cohorts of RA patients. CONCLUSION: These data show, for the first time, how ACPAs derived from human RA serum recognize citrulline. The specific citrulline recognition and backbone-mediated interactions provide a structural explanation for the promiscuous recognition of citrullinated peptides by RA-specific ACPAs.


Subject(s)
Anti-Citrullinated Protein Antibodies/immunology , Arthritis, Rheumatoid/immunology , Cross Reactions/immunology , Animals , Anti-Citrullinated Protein Antibodies/ultrastructure , Antigen-Antibody Complex/ultrastructure , Cohort Studies , Crystallography, X-Ray , Female , Humans , Male , Mice , Receptors, Chimeric Antigen
13.
Malar J ; 17(1): 426, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30442134

ABSTRACT

BACKGROUND: The intimate interaction between the pathophysiology of the human host and the biology of the Plasmodium falciparum parasite results in a wide spectrum of disease outcomes in malaria. Development of severe disease is associated with a progressively augmented imbalance in pro- and anti-inflammatory responses to high parasite loads and sequestration of parasitized erythrocytes. Although these phenomena collectively constitute common denominators for the wide variety of discrete severe malaria manifestations, the mechanistic rationales behind discrepancies in outcome are poorly understood. Exploration of the human pathophysiological response by variations in protein profiles in plasma presents an excellent opportunity to increase the understanding. This is ultimately required for better prediction, prevention and treatment of malaria, which is essential for ongoing elimination and eradication efforts. RESULTS: An affinity proteomics approach was used to analyse 541 paediatric plasma samples collected from community controls and patients with mild or severe malaria in Rwanda. Protein profiles were generated with an antibody-based suspension bead array containing 255 antibodies targetting 115 human proteins. Here, 57 proteins were identified with significantly altered levels (adjusted p-values < 0.001) in patients with malaria compared to controls. From these, the 27 most significant proteins (adjusted p-values < 10-14) were selected for a stringent analysis approach. Here, 24 proteins showed elevated levels in malaria patients and included proteins involved in acute inflammatory response as well as cell adhesion. The remaining three proteins, also implicated in immune regulation and cellular adhesivity, displayed lower abundance in malaria patients. In addition, 37 proteins (adjusted p-values < 0.05) were identified with increased levels in patients with severe compared to mild malaria. This set includes, proteins involved in tissue remodelling and erythrocyte membrane proteins. Collectively, this approach has been successfully used to identify proteins both with known and unknown association with different stages of malaria. CONCLUSION: In this study, a high-throughput affinity proteomics approach was used to find protein profiles in plasma linked to P. falciparum infection and malaria disease progression. The proteins presented herein are mainly involved in inflammatory response, cellular adhesion and as constituents of erythrocyte membrane. These findings have a great potential to provide increased conceptual understanding of host-parasite interaction and malaria pathogenesis.


Subject(s)
Blood Proteins/metabolism , Host-Parasite Interactions , Malaria, Falciparum/physiopathology , Malaria/physiopathology , Plasmodium falciparum/physiology , Cell Adhesion , Child , Child, Preschool , Erythrocytes/parasitology , Female , Humans , Infant , Inflammation/parasitology , Inflammation/physiopathology , Malaria/parasitology , Malaria, Falciparum/parasitology , Male , Rwanda
14.
Methods Mol Biol ; 1785: 231-238, 2018.
Article in English | MEDLINE | ID: mdl-29714022

ABSTRACT

With the increasing availability of collections of antibodies, their evaluation in terms of binding selectivity becomes an important but challenging task. Planar antigen microarrays are very suitable tools to address this task and provide a powerful proteomics platform for the characterization of the binding selectivity of antibodies toward thousands of antigens in parallel. In this chapter, we describe our in-house developed procedures for the generation of high-density planar antigen microarrays with over 21,000 features. We also provide the details of the assay protocol, which we routinely use for the assessment of binding selectivity of the polyclonal antibodies generated within the Human Protein Atlas.


Subject(s)
Antibody Specificity/immunology , Antigens/immunology , Protein Array Analysis/methods , Proteomics/methods , Antibodies/immunology , Antigens/genetics , Humans , Protein Binding/immunology
15.
Methods Mol Biol ; 1785: 239-248, 2018.
Article in English | MEDLINE | ID: mdl-29714023

ABSTRACT

With the increasing number of binding reagents for affinity-based investigations of the human proteome, high-throughput tools for the characterization of the used reagents become essential. For the analysis of binding selectivity, bead-based antigen arrays offer a miniaturized and parallelized assay platform to meet such needs, as they enable two-dimensional multiplexing to analyze up to 384 samples against up to 500 analytes in a single round of analysis. In this chapter, we describe our protocols for the generation of multiplex bead arrays built on immobilized protein fragments, as well as biotinylated peptides. Combined together, these two versions of antigen arrays offer a versatile approach for multiplexed characterization of antibody binding selectivity, off-target interactions, as well as mapping for the amino acids of epitopes involved in antibody binding.


Subject(s)
Antibody Specificity/immunology , Antigens/immunology , Epitope Mapping/methods , Protein Array Analysis/methods , Animals , Antibodies/immunology , Epitopes/genetics , Epitopes/immunology , Humans , Proteome/genetics , Proteome/immunology
16.
Cell ; 170(5): 913-926.e19, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28841417

ABSTRACT

Germinal centers (GCs) are the primary sites of clonal B cell expansion and affinity maturation, directing the production of high-affinity antibodies. This response is a central driver of pathogenesis in autoimmune diseases, such as systemic lupus erythematosus (SLE), but the natural history of autoreactive GCs remains unclear. Here, we present a novel mouse model where the presence of a single autoreactive B cell clone drives the TLR7-dependent activation, expansion, and differentiation of other autoreactive B cells in spontaneous GCs. Once tolerance was broken for one self-antigen, autoreactive GCs generated B cells targeting other self-antigens. GCs became independent of the initial clone and evolved toward dominance of individual clonal lineages, indicating affinity maturation. This process produced serum autoantibodies to a breadth of self-antigens, leading to antibody deposition in the kidneys. Our data provide insight into the maturation of the self-reactive B cell response, contextualizing the epitope spreading observed in autoimmune disease.


Subject(s)
B-Lymphocytes/immunology , Clonal Evolution , Germinal Center/cytology , Germinal Center/immunology , Immune Tolerance , Animals , Autoantibodies/immunology , Autoantigens/immunology , Autoimmune Diseases/immunology , B-Lymphocytes/cytology , Chimera/immunology , Epitopes/immunology , Kidney/immunology , Mice , Mice, Inbred C57BL
17.
Methods Mol Biol ; 1619: 45-54, 2017.
Article in English | MEDLINE | ID: mdl-28674876

ABSTRACT

Antibody microarrays offer high-throughput immunoassays for multiplexed analyses of clinical samples. For such approaches, samples are either labeled in solution to enable a direct readout on the single binder assay format or detected by matched pairs of capture and detection antibodies in dual binder assay format, also known as sandwich assays. Aiming to benefit from the flexibility and capacity offered by single binder assay readout and the specificity and sensitivity of dual binder assays, we developed a multiplexed dual binder procedure that is based on a sequential, rather than combined, antigen binding. The method, entitled dual capture assay (DCA), is composed of an initial antigen capture by antibodies on beads, followed by labeling of captured protein targets on beads, combinatorial elution steps at high and low pH, and a readout using a secondary bead array. Compared to classical single binder assays, the described method demonstrated several advantages such as reduced contribution of off-target binding, lower noise levels, and improved correlation when comparing with clinical reference values. This procedure describes a novel and versatile immunoassay strategy for proteome profiling in body fluids.


Subject(s)
Immunoassay/methods , Proteome , Proteomics/methods , Antibodies, Immobilized , Humans , Protein Array Analysis , Sensitivity and Specificity , Staining and Labeling , Workflow
18.
JCI Insight ; 2(13)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28679953

ABSTRACT

Today, it is known that autoimmune diseases start a long time before clinical symptoms appear. Anti-citrullinated protein antibodies (ACPAs) appear many years before the clinical onset of rheumatoid arthritis (RA). However, it is still unclear if and how ACPAs are arthritogenic. To better understand the molecular basis of pathogenicity of ACPAs, we investigated autoantibodies reactive against the C1 epitope of collagen type II (CII) and its citrullinated variants. We found that these antibodies are commonly occurring in RA. A mAb (ACC1) against citrullinated C1 was found to cross-react with several noncitrullinated epitopes on native CII, causing proteoglycan depletion of cartilage and severe arthritis in mice. Structural studies by X-ray crystallography showed that such recognition is governed by a shared structural motif "RG-TG" within all the epitopes, including electrostatic potential-controlled citrulline specificity. Overall, we have demonstrated a molecular mechanism that explains how ACPAs trigger arthritis.

19.
Sci Rep ; 7(1): 137, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28273936

ABSTRACT

Currently there are no sufficiently sensitive biomarkers able to reflect changes in joint remodelling during osteoarthritis (OA). In this work, we took an affinity proteomic approach to profile serum samples for proteins that could serve as indicators for the diagnosis of radiographic knee OA. Antibody suspension bead arrays were applied to analyze serum samples from patients with OA (n = 273), control subjects (n = 76) and patients with rheumatoid arthritis (RA, n = 244). For verification, a focused bead array was built and applied to an independent set of serum samples from patients with OA (n = 188), control individuals (n = 83) and RA (n = 168) patients. A linear regression analysis adjusting for sex, age and body mass index (BMI) revealed that three proteins were significantly elevated (P < 0.05) in serum from OA patients compared to controls: C3, ITIH1 and S100A6. A panel consisting of these three proteins had an area under the curve of 0.82 for the classification of OA and control samples. Moreover, C3 and ITIH1 levels were also found to be significantly elevated (P < 0.05) in OA patients compared to RA patients. Upon validation in additional study sets, the alterations of these three candidate serum biomarker proteins could support the diagnosis of radiographic knee OA.


Subject(s)
Osteoarthritis, Knee/blood , Osteoarthritis, Knee/diagnosis , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Proteomics/methods , Sensitivity and Specificity , Severity of Illness Index
20.
J Immunother ; 40(4): 132-139, 2017 May.
Article in English | MEDLINE | ID: mdl-28338506

ABSTRACT

We examined the immunologic effects of allogeneic hematopoietic stem cell transplantation (HSCT) in the treatment of pancreatic ductal adenocarcinoma, a deadly disease with a median survival of 24 months for resected tumors and a 5-year survival rate of 6%. After adjuvant chemotherapy, 2 patients with resected pancreatic ductal adenocarcinoma underwent HSCT with HLA-identical sibling donors. Comparable patients who underwent radical surgery, but did not have a donor, served as controls (n=6). Both patients developed humoral and cellular (ie, HLA-A*01:01-restricted) immune responses directed against 2 novel tumor-associated antigens (TAAs), INO80E and UCLH3 after HSCT. Both TAAs were highly expressed in the original tumor tissue suggesting that HSCT promoted a clinically relevant, long-lasting cellular immune response. In contrast to untreated controls, who succumbed to progressive disease, both patients are tumor-free 9 years after diagnosis. Radical surgery combined with HSCT may cure pancreatic adenocarcinoma and change the cellular immune repertoire capable of responding to clinically and biologically relevant TAAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...