Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
One Health ; 18: 100726, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644972

ABSTRACT

Pathogenic Leptospira can cause leptospirosis: a widespread, potentially fatal bacterial zoonosis whose risk is mediated by the soil and water features, animal host distributions, meaning the local ecosystem. When human cases of leptospirosis occur, it is challenging to track down their source because ecosystem-level epidemiological knowledge on Leptospira is needed. Between 2016 and 2019 in a focal riparian ecosystem, the human population experienced an outbreak and successive cases of leptospirosis attributable to L. kirschneri and L. interrogans. The epidemiological investigation was carried out using the One Health approach, as described in international health guidelines. As a first step in this process, we investigated leptospiral carriage in the main animal hosts found in the region. We sampled 143 nutrias, 17 muskrats, and 10 Norway rats using convenient trapping. DNA was extracted from their kidneys, lungs, and urine and subjected to real-time PCR (RT-PCR) targeting the Leptospira 16S rDNA and lfb1 genes. In the farms along the river's stretch of interest, we sampled serum from 439 cattle and used a microscopic agglutination test to detect the presence of antibodies against Leptospira. Urine samples were concomitantly obtained from 145 cattle and were used in two analyses: RT-PCR targeting the Leptospira 16S rDNA gene and Leptospira culturing. We found th, wt rodents were the most likely source of the L. interrogans behind the human cases. The cattle tested negative for Leptospira DNA but positive for antibodies against the serogroups implicated in the human cases. We failed to identify the potential source of the L. kirschneri responsible for several human cases of leptospirosis. Our results call for further clarification of the Leptospira maintenance community, which may comprise known maintenance hosts, such as rodents, as well as taxa not commonly considered to be maintenance hosts but that can still spread Leptospira. The resulting research network will collaboratively conduct future eco-epidemiological surveys to illuminate the leptospirosis risks faced by humans and animals within ecosystems.

2.
Vet Med Sci ; 10(3): e1430, 2024 05.
Article in English | MEDLINE | ID: mdl-38533755

ABSTRACT

BACKGROUND: Leptospirosis is a zoonotic disease. It is particularly prevalent in tropical countries and has major consequences for human and animal health. In Benin, the disease's epidemiology remains poorly understood, especially in livestock, for which data are lacking. OBJECTIVES: To characterise Leptospira seroprevalence and locally circulating serogroups in livestock from Cotonou and to estimate the prevalence of Leptospira renal carriage in cattle. METHODS: We conducted a cross-sectional study in February 2020 during which livestock were sampled at an abattoir and in an impoverished city district. We analysed blood samples from 279 livestock animals (i.e. cattle, sheep, goats and pigs) using the microscopic agglutination test. Additionally, samples of renal tissue from 100 cattle underwent 16s rRNA (rrs) real-time PCR analysis. RESULTS: For the 131 cattle, 85 sheep, and 50 goats tested, seroprevalence was 18% (95% confidence interval [CI] [12%, 26%]), 9% (95% CI [4%, 17%] and 2% (95% CI [0%, 9%]), respectively, and most of the seropositive animals were associated with 1:100 titres. All 13 pigs were seronegative. Leptospira DNA was found in the renal tissue of 10% (95% CI [5%, 18%]) of the cattle tested (n = 100). Leptospira borgpetersenii was the main species present (n = 7), but Leptospira interrogans (n = 2) and Leptospira kirschneri (n = 1) were also detected. Various serogroups (Canicola, Grippotyphosa, Sejroe, Icterohaemorrhagiae, Pomona, Pyrogenes, Australis and Autumnalis) were detected using microscopic agglutination test without a clear predominance of any of them. CONCLUSIONS: These results suggest that abattoir workers and people living in close contact with livestock in poor urban areas are exposed to the risk of Leptospira infection.


Subject(s)
Cattle Diseases , Goat Diseases , Leptospira , Leptospirosis , Sheep Diseases , Swine Diseases , Animals , Cattle , Humans , Sheep , Swine , Livestock/genetics , Seroepidemiologic Studies , Cross-Sectional Studies , Benin , RNA, Ribosomal, 16S , Leptospirosis/veterinary , Goats/genetics , Cattle Diseases/epidemiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Swine Diseases/epidemiology
3.
Front Cell Infect Microbiol ; 13: 1236866, 2023.
Article in English | MEDLINE | ID: mdl-37662012

ABSTRACT

Leptospirosis is a bacterial zoonotic disease. Humans and dogs are susceptible hosts, with similar clinical manifestations ranging from a febrile phase to multiple organ dysfunction. The incidence of leptospirosis in mainland France is relatively high, at about 1 case per 100,000 inhabitants, but our knowledge of the strains circulating in humans and dogs remains limited. We studied the polymorphism of the lfb1 gene sequences in an exhaustive database, to facilitate the identification of Leptospira strains. We identified 46 species-groups (SG) encompassing the eight pathogenic species of Leptospira. We sequenced the lfb1 gene amplification products from 170 biological samples collected from 2019 to 2021: 110 from humans and 60 from dogs. Epidemiological data, including vaccination status in dogs, were also collected. Three Leptospira species displaying considerable diversity were identified: L. interrogans, with eight lfb1 species-groups (including five new lfb1 species-groups) in humans and dogs; L. kirschneri, with two lfb1 species-groups in humans and dogs; and L. borgpetersenii, with one lfb1 species-group in humans only. The lfb1 species-group L. interrogans SG1, corresponding to serovar Icterohaemorrhagiae or Copenhageni, was frequently retrieved from both humans and dogs (n=67/110; 60.9% and n=59/60; 98.3% respectively). A high proportion of the affected dogs developed the disease despite vaccination (n=30/60; 50%). Genotyping with the polymorphic lfb1 gene is both robust and simple. This approach provided the first global picture of the Leptospira strains responsible for acute infections in mainland France, based on biological samples but without the need for culture. Identification of the Leptospira strains circulating and their changes over time will facilitate more precise epidemiological monitoring of susceptible and reservoir species. It should also facilitate the monitoring of environmental contamination, making it possible to implement preventive measures and to reduce the burden of this disease.


Subject(s)
Leptospira , Leptospirosis , Humans , Dogs , Animals , Leptospira/genetics , Leptospirosis/epidemiology , Leptospirosis/veterinary , Bacterial Zoonoses , France/epidemiology , Polymorphism, Genetic , RNA
4.
Pathogens ; 12(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36839532

ABSTRACT

Rodents are the primary reservoirs for pathogenic Leptospira species, which cause leptospirosis. Among the key potential carriers are water voles, whose population outbreaks can consequently pose a major threat to human and animal health. We studied the prevalence, prominence, and epidemiology of pathogenic Leptospira species in water voles in central France. First, 46 voles were captured, and DNA was extracted from kidney, lung, liver, blood, and urine and tested for the presence of Leptospira using three molecular methods: PCR, O-antigen typing, and variable number tandem repeat (VNTR) typing. We also attempted to culture leptospires from kidney and urine samples. In addition, we investigated leptospiral antibodies in serum samples from 60 sheep using microscopic agglutination testing. These animals co-occurred with the voles, so we sought to assess their degree of exposure and involvement in pathogen dynamics. The overall prevalence of infection was 76.1% (CI95% [61.2%, 87.4%]). The only strain found was L. kirschneri serogroup Grippotyphosa and a similar VNTR profile was acquired. Leptospires were successfully cultured from kidney and urine samples for four voles. Three sheep had low antibody titers against the Leptospira serogroup Grippotyphosa. Taken together, our results suggest the exclusive carriage of L. kirschneri serogroup Grippotyphosa among water voles in central France. Nevertheless, their ability to act as reservoir hosts that transmit the pathogen to co-occurring livestock remains unclear and merits further research.

5.
Trop Med Infect Dis ; 7(10)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36288001

ABSTRACT

Leptospirosis is a major zoonotic disease that has emerged worldwide, and numerous studies performed in affected countries have provided epidemiological knowledge of the disease. However, currently, there is inadequate knowledge of leptospirosis in the Middle East. Therefore, we grouped publications from various Middle Eastern countries to acquire a general knowledge of the epidemiological situation of leptospirosis and provide an initial description of the leptospiral relative risk and circulating serogroups. We conducted a detailed literature search of existing studies describing Leptospira prevalence and seroprevalence in Middle Eastern countries. The search was performed using online PubMed and ScienceDirect databases. One hundred and one articles were included in this review. Some countries, including Iran, Turkey, and Egypt, reported more publications compared to others, such as Lebanon, Kuwait, and Saudi Arabia. Frequently, the seroprevalence of leptospirosis varied considerably between and within countries. The prevalence of leptospirosis was comparable in most Middle Eastern countries; however, it varied between some countries. The methods of detection also varied among studies, with the microscopic agglutination test used most commonly. Some hosts were more recurrent compared with others. This review summarizes the epidemiological situation of Leptospira infection in the Middle East, reporting predominant serogroups-Sejroe, Grippotyphosa, Icterohaemorrhagiae, Autumnalis, and Pomona-that were identified in the most commonly tested hosts. Our findings emphasize the need to develop a deeper understanding of the epidemiology of Leptospira spp. and prioritize the disease as a public health problem in this region. To achieve this goal, increased awareness is critical, and more publications related to the topic and following a standardized approach are needed.

6.
Porcine Health Manag ; 8(1): 15, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379346

ABSTRACT

BACKGROUND: Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira and is responsible for significant economic porcine livestock losses. Knowledge of Leptospira serogroups and their distributions is important for evaluation of the relevance of leptospirosis management measures, including use of the prophylactic vaccine that was recently made available in France. A retrospective study was conducted to determine the relationships between different circulating Leptospira serogroups. Pigs from across France presenting clinical signs suggestive of leptospirosis were tested with the microagglutination test (MAT) between 2011 and 2017. We used weighted averages to determine serogroup distributions according to MAT results and considering cross-reactions. RESULTS: A total of 19,395 pig sera, mostly from Brittany, were tested, and 22.7% were found to be positive for at least one Leptospira serogroup. Analysis of the 4,346 seropositive results for which the putative infective serogroup could be defined, revealed that two out of ten serogroups were much more frequent than the others: Australis (48.5%) and Icterohaemorrhagiae (38.2%). Other serogroups, including Autumnalis, Panama, Ballum, Tarassovi, Sejroe, Grippotyphosa, Bataviae, and Pomona, were less common. CONCLUSIONS: Although diagnostic laboratory data cannot be extrapolated to infer the distribution of Leptospira serogroups at the nationwide scale in France, the analysis of such data can provide an overview of the relationship between circulating Leptospira serogroups in space and time. During the last decade, protection against the serogroups Australis and Icterohaemorrhagiae would have prevented most of the clinical porcine leptospirosis cases in the large number of farms that we studied. In the future, epidemiological information related to circulating Leptospira serogroups should be extracted from data with a standardized approach for use in nationwide or international surveillance and prophylactic strategy support.

7.
Vet Res ; 52(1): 56, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33853678

ABSTRACT

ELISA methods are the diagnostic tools recommended for the serological diagnosis of Coxiella burnetii infection in ruminants but their respective diagnostic performances are difficult to assess because of the absence of a gold standard. This study focused on three commercial ELISA tests with the following objectives (1) assess their sensitivity and specificity in sheep, goats and cattle, (2) assess the between- and within-herd seroprevalence distribution in these species, accounting for diagnostic errors, and (3) estimate optimal sample sizes considering sensitivity and specificity at herd level. We comparatively tested 1413 cattle, 1474 goat and 1432 sheep serum samples collected in France. We analyzed the cross-classified test results with a hierarchical zero-inflated beta-binomial latent class model considering each herd as a population and conditional dependence as a fixed effect. Potential biases and coverage probabilities of the model were assessed by simulation. Conditional dependence for truly seropositive animals was high in all species for two of the three ELISA methods. Specificity estimates were high, ranging from 94.8% [92.1; 97.8] to 99.2% [98.5; 99.7], whereas sensitivity estimates were generally low, ranging from 39.3 [30.7; 47.0] to 90.5% [83.3; 93.8]. Between- and within-herd seroprevalence estimates varied greatly among geographic areas and herds. Overall, goats showed higher within-herd seroprevalence levels than sheep and cattle. The optimal sample size maximizing both herd sensitivity and herd specificity varied from 3 to at least 20 animals depending on the test and ruminant species. This study provides better interpretation of three widely used commercial ELISA tests and will make it possible to optimize their implementation in future studies. The methodology developed may likewise be applied to other human or animal diseases.


Subject(s)
Cattle Diseases/diagnosis , Coxiella burnetii/isolation & purification , Enzyme-Linked Immunosorbent Assay/veterinary , Goat Diseases/diagnosis , Q Fever/veterinary , Sheep Diseases/diagnosis , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Female , France/epidemiology , Goat Diseases/epidemiology , Goat Diseases/microbiology , Goats , Latent Class Analysis , Prevalence , Q Fever/diagnosis , Q Fever/epidemiology , Q Fever/microbiology , Seroepidemiologic Studies , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Sheep, Domestic
8.
PLoS One ; 15(2): e0228577, 2020.
Article in English | MEDLINE | ID: mdl-32074117

ABSTRACT

Knowledge on the possible sources of human leptospirosis, other than rats, is currently lacking. To assess the distribution pattern of exposure and infection by Leptospira serogroups in the two main semi-aquatic rodents of Western France, coypus (Myocastor coypus) and muskrats (Ondatra zibethicus), results of micro-agglutination testing and renal tissue PCR were used. In coypus, the apparent prevalence was 11% (n = 524, CI95% = [9% - 14%]), seroprevalence was 42% (n = 590, CI95% = [38% - 46%]), and the predominant serogroup was Australis (84%). In muskrats, the apparent prevalence was 33% (n = 274, CI95% = [27% - 39%]), seroprevalence was 57% (n = 305, CI95% = [52% - 63%]), and the predominant serogroup was Grippotyphosa (47%). Muskrats should therefore be considered an important source of Grippotyphosa infection in humans and domestic animals exposed in this part of France.


Subject(s)
Arvicolinae/microbiology , Carrier State/microbiology , Leptospira/pathogenicity , Animals , Antibodies, Bacterial/blood , Arvicolinae/blood , Arvicolinae/immunology , Carrier State/blood , Carrier State/immunology , Climate , Ecosystem , Kidney/microbiology , Leptospira/immunology
9.
Euro Surveill ; 23(48)2018 Nov.
Article in English | MEDLINE | ID: mdl-30621819

ABSTRACT

In September 2016, a cluster of seven kayakers with clinical symptoms of leptospirosis with onset since July 2016 was reported to French health authorities. Human and animal investigations were undertaken to describe the outbreak, identify the likely place and source of infection and implement necessary control measures. We identified 103 patients with clinical symptoms of leptospirosis between 1 June and 31 October 2016 who lived in the Ille-et-Vilaine district in Brittany. Of these, 14 (including the original seven) reported contacts with the river Vilaine during the incubation period and were defined as outbreak cases: eight were confirmed by serology tests or PCR and six were probable without a laboratory confirmation for leptospirosis. All 14 cases were kayakers. Three distinct contamination sites were identified on a 30 km stretch of the river Vilaine. Nine cases reported having skin wounds while kayaking. None were vaccinated against leptospirosis. The outbreak was attributed to Leptospira kirschneri serogroup Grippotyphosa. Animal investigations did not allow identifying the possible reservoir. Leptospirosis outbreaks associated with freshwater sports are rare in temperate climates. The prevention of such outbreaks requires control of potential animal reservoirs in zones such as the Vilaine valley and that kayakers adopt the recommended individual prevention measures.


Subject(s)
Disease Outbreaks , Leptospira/isolation & purification , Leptospirosis/epidemiology , Animals , Animals, Wild/microbiology , Antibodies, Bacterial/blood , DNA, Bacterial/blood , DNA, Bacterial/genetics , Female , France/epidemiology , Humans , Leptospira/classification , Leptospira/genetics , Leptospirosis/diagnosis , Leptospirosis/microbiology , Male , Polymerase Chain Reaction , Sports , Water Sports
10.
PLoS One ; 11(9): e0162549, 2016.
Article in English | MEDLINE | ID: mdl-27680672

ABSTRACT

Human leptospirosis is a zoonotic and potentially fatal disease that has increasingly been reported in both developing and developed countries, including France. However, our understanding of the basic aspects of the epidemiology of this disease, including the source of Leptospira serogroup Australis infections in humans and domestic animals, remains incomplete. We investigated the genetic diversity of Leptospira in 28 species of wildlife other than rats using variable number tandem repeat (VNTR) and multispacer sequence typing (MST). The DNA of pathogenic Leptospira was detected in the kidney tissues of 201 individuals out of 3,738 tested individuals. A wide diversity, including 50 VNTR profiles and 8 MST profiles, was observed. Hedgehogs and mustelid species had the highest risk of being infected (logistic regression, OR = 66.8, CI95% = 30.9-144 and OR = 16.7, CI95% = 8.7-31.8, respectively). Almost all genetic profiles obtained from the hedgehogs were related to Leptospira interrogans Australis, suggesting the latter as a host-adapted bacterium, whereas mustelid species were infected by various genotypes, suggesting their interaction with Leptospira was different. By providing an inventory of the circulating strains of Leptospira and by pointing to hedgehogs as a potential reservoir of L. interrogans Australis, our study advances current knowledge on Leptospira animal carriers, and this information could serve to enhance epidemiological investigations in the future.

11.
PLoS One ; 10(10): e0139604, 2015.
Article in English | MEDLINE | ID: mdl-26447693

ABSTRACT

BACKGROUND: Urban leptospirosis has increasingly been reported in both developing and developed countries. The control of the disease is limited because our understanding of basic aspects of the epidemiology, including the transmission routes of leptospires among rat populations, remains incomplete. Through the ability to distinguish among Leptospira strains in rats, multispacer sequence typing (MST) could provide a modern understanding of Leptospira epidemiology; however, to our knowledge, the distribution of Leptospira strains among urban rat colonies has not been investigated using MST. AIMS AND METHODOLOGY: The objective of this study was to identify the Leptospira strains present in rats (Rattus norvegicus) in Lyon (France) using MST and to characterize their spatial distribution. Kidneys and urine were collected from rats trapped live in seven locations in the city and in one suburban location. Each location was considered to represent a rat colony. Bacterial cultures and quantitative polymerase chain reaction (qPCR) assays were performed, and the L. interrogans DNA identified was then genotyped using MST. The distributions of Leptospira strains were spatially described. KEY RESULTS: Among 84 wild rats, MST profiles were obtained in 35 of 37 rats that had a positive result for L. interrogans by bacterial culture and/or qPCR analyses. All of the MST profiles were related to reference strains previously isolated from human patients that belong to the serogroup Icterohaemorrhagiae and the serovars [strain(s)] Copenhageni [Wijinberg or M20] (n = 26), Icterohaemorrhagiae [CHU Réunion] (n = 7), Icterohaemorrhagiae [R1] (n = 1) and Copenhageni [Shibaura 9] (n = 1). Each colony was infected with leptospires having the same MST profile. MAJOR CONCLUSIONS: This study demonstrated that MST could be used for the purpose of field studies, either on culture isolates or on DNA extracted from kidneys and urine, to distinguish among L. interrogans isolates in rats. MST could thus be used to monitor their distributions in urban rats from the same city, thereby providing new knowledge that could be applied to explore the circulation of L. interrogans infection in rat colonies. Because the strains are related to those previously found in humans, this application of MST could aid in the source tracking of human leptospirosis, and the findings would be relevant for public health purposes according to the One Health principle.


Subject(s)
DNA, Bacterial/genetics , Leptospira interrogans/genetics , Leptospira interrogans/isolation & purification , Leptospirosis/epidemiology , Leptospirosis/transmission , Rats/microbiology , Animals , Cities/epidemiology , DNA, Bacterial/isolation & purification , France/epidemiology , Humans , Public Health
12.
Am J Trop Med Hyg ; 91(4): 756-759, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092816

ABSTRACT

A retrospective study was conducted to identify and describe the distribution pattern of Leptospira serogroups in domestic animals in France. The population consisted of cattle herds and dogs with clinically suspected leptospirosis that were tested at the "Laboratoire des Leptospires" between 2008 and 2011. The laboratory database was queried for records of cattle and dogs in which seroreactivity in Leptospira microagglutination tests was consistent with a recent or current infection, excluding vaccine serogroups in dogs. A total of 394 cattle herds and 232 dogs were diagnosed with clinical leptospirosis, and the results suggested infection by the Leptospira serogroup Australis in 43% and 63%, respectively; by the Leptospira serogroup Grippotyphosa in 17% and 9%, respectively; and by the Leptospira serogroup Sejroe in 33% and 6%, respectively. This inventory of infecting Leptospira serogroups revealed that current vaccines in France are not fully capable of preventing the clinical form of the disease.


Subject(s)
Cattle Diseases/epidemiology , Dog Diseases/epidemiology , Leptospira/isolation & purification , Leptospirosis/veterinary , Agglutination Tests/veterinary , Animals , Cattle , Cattle Diseases/microbiology , Demography , Dog Diseases/microbiology , Dogs , France/epidemiology , Leptospira/classification , Leptospira/immunology , Leptospirosis/epidemiology , Leptospirosis/microbiology , Retrospective Studies , Serogroup
13.
Virol J ; 11: 90, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24886183

ABSTRACT

BACKGROUND: Hepatitis E virus has been detected in a wide range of animals. While Genotypes 1-2 of this virus infect only humans, 3-4 can spread from animals to humans and cause sporadic cases of human disease. Pig, and possibly also rats, may act as a reservoir for virus. From a public health perspective it is important to clarify the role of rats for infection of humans. Rats often live close to humans and are therefore of special interest to public health. Rats live of waste and inside the sewage system and may become infected. Reports of hepatitis E virus in rats have been published but not from France. The possibility that rats in an urban area in France were Hepatitis E virus infected, with which type and relationship to other strains was investigated. This study provides information important to public health and better understanding the occurrence of hepatitis E virus in the environment.Eighty one rats (Rattus Norvegicus) were captured, euthanized, sampled (liver and faeces) and analyzed by real-time RT-PCR's, one specific for Hepatitis E virus in rats and one specific for genotype 1-4 that that is known to infect humans. Positive samples were analyzed by a nested broad spectrum RT-PCR, sequenced and compared with sequences in Genbank. FINDINGS: Twelve liver and 11 faeces samples out of 81 liver and 81 faeces samples from 81 captured rats were positive in the PCR specific for Hepatitis E virus in rats and none in the PCR specific for genotype 1-4. Comparison by nucleotide BLAST showed a maximum of 87% similarity to Hepatitis E virus previously detected in rats and significantly less to genotype 1-4. CONCLUSIONS: This is the first study demonstrating that rats in France carries hepatitis E virus and provide information regarding its relation to other virus strains previously detected in rats and other host animals world-wide. Genotype 1-4 was not detected.


Subject(s)
Hepatitis E virus/isolation & purification , Hepatitis E/veterinary , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Rodent Diseases/virology , Animals , Cluster Analysis , Feces/virology , France , Genetic Variation , Genotype , Hepatitis E/virology , Hepatitis E virus/genetics , Liver/virology , RNA, Viral/genetics , Rats , Sequence Analysis, DNA
14.
Virol J ; 11: 32, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24555484

ABSTRACT

BACKGROUND: Hantaviruses are single-stranded RNA viruses, which are transmitted to humans primarily via inhalation of aerosolised virus in contaminated rodent urine and faeces. Whilst infected reservoir hosts are asymptomatic, human infections can lead to two clinical manifestations, haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), with varying degrees of clinical severity. The incidence of rodent and human cases of Seoul virus (SEOV) in Europe has been considered to be low, and speculated to be driven by the sporadic introduction of infected brown rats (Rattus norvegicus) via ports. METHODS: Between October 2010 and March 2012, 128 brown rats were caught at sites across the Lyon region in France. RESULTS: SEOV RNA was detected in the lungs of 14% (95% CI 8.01-20.11) of brown rats tested using a nested pan-hantavirus RT-PCR (polymerase gene). Phylogenetic analysis supports the inclusion of the Lyon SEOV within Lineage 7 with SEOV strains originating from SE Asia and the previously reported French & Belgian SEOV strains. Sequence data obtained from the recent human SEOV case (Replonges) was most similar to that obtained from one brown rat trapped in a public park in Lyon city centre. We obtained significantly improved recovery of virus genome sequence directly from SEOV infected lung material using a simple viral enrichment approach and NGS technology. CONCLUSIONS: The detection of SEOV in two wild caught brown rats in the UK and the multiple detection of SEOV infected brown rats in the Lyon region of France, suggests that SEOV is circulating in European brown rats. Under-reporting and difficulties in identifying the hantaviruses associated with HFRS may mask the public health impact of SEOV in Europe.


Subject(s)
Carrier State/veterinary , Disease Reservoirs , Rats/virology , Seoul virus/isolation & purification , Animals , Carrier State/epidemiology , Carrier State/virology , Cluster Analysis , France/epidemiology , Lung/virology , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology
15.
J Clin Microbiol ; 52(2): 564-71, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24478489

ABSTRACT

Leptospirosis is a worldwide zoonosis which is responsible for the typical form of Weil's disease. The epidemiological surveillance of the Leptospira species agent is important for host prevalence control. Although the genotyping methods have progressed, the identification of some serovars remains ambiguous. We investigated the multispacer sequence typing (MST) method for genotyping strains belonging to the species Leptospira interrogans, which is the main agent of leptospirosis worldwide. A total of 33 DNA samples isolated from the reference strains of L. interrogans serogroups Icterohaemorrhagiae, Australis, Canicola, and Grippotyphosa, which are the most prevalent serogroups in France, were analyzed by both the variable-number tandem-repeat (VNTR) and MST methods. An MST database has been constructed from the DNA of these reference strains to define the MST profiles. The MST profiles corroborated with the VNTR results. Moreover, the MST analysis allowed the identification at the serovar level or potentially to the isolate level for strains belonging to L. interrogans serovar Icterohaemorrhagiae, which then results in a higher resolution than VNTR (Hunter-Gaston index of 0.94 versus 0.68). Regarding L. interrogans serogroups Australis, Canicola, and Grippotyphosa, the MST and VNTR methods similarly identified the genotype. The MST method enabled the acquisition of simple and robust results that were based on the nucleotide sequences. The MST identified clinical isolates in correlation with the reference serovar profiles, thus permitting an epidemiological surveillance of circulating L. interrogans strains, especially for the Icterohaemorrhagiae serogroup, which includes the most prevalent strains of public health interest.


Subject(s)
Leptospira interrogans/classification , Leptospira interrogans/genetics , Leptospirosis/microbiology , Multilocus Sequence Typing/methods , Cluster Analysis , France/epidemiology , Genotype , Humans , Leptospirosis/epidemiology , Minisatellite Repeats , Molecular Epidemiology/methods , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...