Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 10(27): eadl3921, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968362

ABSTRACT

Superconductivity often emerges as a dome around a quantum critical point (QCP) where long-range order is suppressed to zero temperature, mostly in magnetically ordered materials. However, the emergence of superconductivity at charge-order QCPs remains shrouded in mystery, despite its relevance to high-temperature superconductors and other exotic phases of matter. Here, we present resistance measurements proving that a dome of superconductivity surrounds the putative charge-density-wave QCP in pristine samples of titanium diselenide tuned with hydrostatic pressure. In addition, our quantum oscillation measurements combined with electronic structure calculations show that superconductivity sets in precisely when large electron and hole pockets suddenly appear through an abrupt change of the Fermi surface topology, also known as a Lifshitz transition. Combined with the known repulsive interaction, this suggests that unconventional s± superconductivity is mediated by charge-density-wave fluctuations in titanium diselenide. These results highlight the importance of the electronic ground state and charge fluctuations in enabling unconventional superconductivity.

2.
Phys Rev Lett ; 120(11): 117002, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29601770

ABSTRACT

In underdoped cuprates, an incommensurate charge density wave (CDW) order is known to coexist with superconductivity. A dip in T_{c} at the hole doping level where the CDW is strongest (n_{p}≃0.12) suggests that CDW order may suppress superconductivity. We investigate the interplay of charge order with superconductivity in underdoped YBa_{2}Cu_{3}O_{7-δ} by measuring the temperature dependence of the Hall coefficient R_{H}(T) at high magnetic field and at high hydrostatic pressure. We find that, although pressure increases T_{c} by up to 10 K at 2.6 GPa, it has very little effect on R_{H}(T). This suggests that pressure, at these levels, only weakly affects the CDW and that the increase in T_{c} with pressure cannot be attributed to a suppression of the CDW. We argue, therefore, that the dip in T_{c} at n_{p}≃0.12 at ambient pressure is probably not caused by the CDW formation.

SELECTION OF CITATIONS
SEARCH DETAIL