Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Environ Entomol ; 53(3): 383-397, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38572766

ABSTRACT

Arthropods are active during the winter in temperate regions. Many use the seasonal snowpack as a buffer against harsh ambient conditions and are active in a refugium known as the subnivium. While the use of the subnivium by arthropods is well established, far less is known about subnivium community composition, abundance, biomass, and diversity and how these characteristics compare with the community in the summer. Understanding subnivium communities is especially important given the observed and anticipated changes in snowpack depth and duration due to the changing climate. We compared subnivium arthropod communities with those active during the summer using pitfall trapping in northern New Hampshire. We found that compositions of ground-active arthropod communities in the subnivium differed from those in the summer. The subnivium arthropod community featured moderate levels of richness and other measures of diversity that tended to be lower than the summer community. More strikingly, the subnivium community was much lower in overall abundance and biomass. Interestingly, some arthropods were dominant in the subnivium but either rare or absent in summer collections. These putative "subnivium specialists" included the spider Cicurina brevis (Emerton 1890) (Araneae: Hahniidae) and 3 rove beetles (Coleoptera: Staphylinidae): Arpedium cribratum Fauvel, 1878, Lesteva pallipes LeConte, 1863, and Porrhodites inflatus (Hatch, 1957). This study provides a detailed account of the subnivium arthropod community, establishes baseline information on arthropod communities in temperate forests of northeastern North America, and explores the idea of subnivium specialist taxa that are highly active in winter and might be especially vulnerable to climate change.


Subject(s)
Arthropods , Biodiversity , Seasons , Snow , Animals , New Hampshire , Spiders/physiology , Refugium , Biomass
2.
Ecol Appl ; 33(2): e2761, 2023 03.
Article in English | MEDLINE | ID: mdl-36218183

ABSTRACT

Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders.


Subject(s)
Ecosystem , Tracheophyta , Animals , Phylogeny , Insecta , Plants , Introduced Species
3.
Ecology ; 103(11): e3808, 2022 11.
Article in English | MEDLINE | ID: mdl-35792423

ABSTRACT

Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence. More generally, the strength of density dependence may be predictably related to other species-specific ecological attributes such as shade tolerance, or the relative local abundance of a species. To test the strength of density dependence and whether it affects seedling community diversity in a temperate forest, we tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally planted beneath conspecific and heterospecific adults on the Prospect Hill tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always lower under conspecific adults, which increased seedling community diversity in one of six treatments. We compared these results to evidence of CNDD from observed sapling survival patterns of 28 species over approximately 8 years in an adjacent 35-ha forest plot. We tested whether species-specific estimates of CNDD were associated with mycorrhizal association, shade tolerance, and local abundance. We found evidence of significant, negative conspecific density dependence (CNDD) in 23 of 28 species, and positive conspecific density dependence in two species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited stronger (e.g., more negative) CNDD than arbuscular mycorrhizal-associated species. CNDD was also stronger in more shade-tolerant species but was not associated with local abundance. Conspecific adult trees often have a negative influence on seedling survival in temperate forests, particularly for tree species with certain traits. Here we found strong experimental and observational evidence that ectomycorrhizal-associating species consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence from experiments and observations of sapling mortality suggest a mechanistic link between negative effects of conspecific adults on seedling and sapling survival and local tree species distributions.


Subject(s)
Mycorrhizae , Trees , Forests , Seedlings , Species Specificity
4.
Methods Mol Biol ; 2536: 3-11, 2022.
Article in English | MEDLINE | ID: mdl-35819595

ABSTRACT

The establishment of laboratory isolates of the pinewood nematode Bursaphelenchus xylophilus, the causal agent of the pine wilt disease, has been crucial to research on this important forest pathogen. Here we describe a simple, low-cost, and easy way to obtain samples of wild populations of B. xylophilus by culturing dauers extracted directly from the insect vector.


Subject(s)
Insect Vectors , Nematoda , Pinus , Animals , Pinus/parasitology , Plant Diseases/parasitology
5.
Ecol Evol ; 12(4): e8797, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35475182

ABSTRACT

The interface between field biology and technology is energizing the collection of vast quantities of environmental data. Passive acoustic monitoring, the use of unattended recording devices to capture environmental sound, is an example where technological advances have facilitated an influx of data that routinely exceeds the capacity for analysis. Computational advances, particularly the integration of machine learning approaches, will support data extraction efforts. However, the analysis and interpretation of these data will require parallel growth in conceptual and technical approaches for data analysis. Here, we use a large hand-annotated dataset to showcase analysis approaches that will become increasingly useful as datasets grow and data extraction can be partially automated.We propose and demonstrate seven technical approaches for analyzing bioacoustic data. These include the following: (1) generating species lists and descriptions of vocal variation, (2) assessing how abiotic factors (e.g., rain and wind) impact vocalization rates, (3) testing for differences in community vocalization activity across sites and habitat types, (4) quantifying the phenology of vocal activity, (5) testing for spatiotemporal correlations in vocalizations within species, (6) among species, and (7) using rarefaction analysis to quantify diversity and optimize bioacoustic sampling.To demonstrate these approaches, we sampled in 2016 and 2018 and used hand annotations of 129,866 bird vocalizations from two forests in New Hampshire, USA, including sites in the Hubbard Brook Experiment Forest where bioacoustic data could be integrated with more than 50 years of observer-based avian studies. Acoustic monitoring revealed differences in community patterns in vocalization activity between forests of different ages, as well as between nearby similar watersheds. Of numerous environmental variables that were evaluated, background noise was most clearly related to vocalization rates. The songbird community included one cluster of species where vocalization rates declined as ambient noise increased and another cluster where vocalization rates declined over the nesting season. In some common species, the number of vocalizations produced per day was correlated at scales of up to 15 km. Rarefaction analyses showed that adding sampling sites increased species detections more than adding sampling days.Although our analyses used hand-annotated data, the methods will extend readily to large-scale automated detection of vocalization events. Such data are likely to become increasingly available as autonomous recording units become more advanced, affordable, and power efficient. Passive acoustic monitoring with human or automated identification at the species level offers growing potential to complement observer-based studies of avian ecology.

6.
Annu Rev Entomol ; 67: 181-199, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34606366

ABSTRACT

One promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management.


Subject(s)
Ecosystem , Forests , Animals , Forestry , Insecta , Trees
7.
Oecologia ; 196(4): 1061-1072, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34338862

ABSTRACT

Processes that change with density are inherent in all populations, yet quantifying density dependence with empirical data remains a challenge. This is especially true for animals recruiting in patchy landscapes because heterogeneity in habitat quality in combination with habitat choice can obscure patterns expected from density dependence. Mosquitoes (Diptera: Culicidae) typically experience strong density dependence when larvae compete for food, however, effects vary across species and contexts. If populations experience intense intraspecific density-dependent mortality then overcompensation can occur, where the number of survivors declines at high densities producing complex endogenous dynamics. To seek generalizations about density dependence in a widespread species of Arctic mosquito, Aedes nigripes, we combined a laboratory experiment, field observations, and modeling approaches. We evaluated alternative formulations of discrete population models and compared best-performing models from our lab study to larval densities from ponds in western Greenland. Survivorship curves from the lab were the best fit by a Hassell model with compensating density dependence (equivalent to a Beverton-Holt model) where peak recruitment ranged from 8 to 80 mosquitoes per liter depending on resource supply. In contrast, our field data did not show a signal of strong density dependence, suggesting that other processes such as predation may lower realized densities in nature, and that expected patterns may be obscured because larval abundance covaries with resources (cryptic density dependence). Our study emphasizes the importance of covariation between the environment, habitat choice, and density dependence in understanding population dynamics across landscapes, and demonstrates the value of pairing lab and field studies.


Subject(s)
Aedes , Animals , Larva , Population Density , Population Dynamics , Predatory Behavior
8.
Oecologia ; 195(4): 995-1005, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33786709

ABSTRACT

Rapid warming is predicted to increase insect herbivory across the tundra biome, yet how this will impact the community and ecosystem dynamics remains poorly understood. Increasing background invertebrate herbivory could impede Arctic greening, by serving as a top-down control on tundra vegetation. Many tundra ecosystems are also susceptible to severe insect herbivory outbreaks which can have lasting effects on vegetation communities. To explore how tundra-insect herbivore systems respond to warming, we measured shrub traits and foliar herbivory damage at 16 sites along a landscape gradient in western Greenland. Here we show that shrub foliar insect herbivory damage on two dominant deciduous shrubs, Salix glauca and Betula nana, was positively correlated with increasing temperatures throughout the first half of the 2017 growing season. We found that the majority of insect herbivory damage occurred in July, which was outside the period of rapid leaf expansion that occurred throughout most of June. Defoliators caused the most foliar damage in both shrub species. Additionally, insect herbivores removed a larger proportion of B. nana leaf biomass in warmer sites, which is due to a combination of increased foliar herbivory with a coinciding decline in foliar biomass. These results suggest that the effects of rising temperatures on both insect herbivores and host species are important to consider when predicting the trajectory of Arctic tundra shrub expansion.


Subject(s)
Ecosystem , Herbivory , Animals , Arctic Regions , Greenland , Tundra
9.
New Phytol ; 230(1): 316-326, 2021 04.
Article in English | MEDLINE | ID: mdl-33341954

ABSTRACT

●Fine roots and mycorrhizal fungi may either stimulate leaf litter decomposition by providing free-living decomposers with root-derived carbon, or may slow decomposition through nutrient competition between mycorrhizal and saprotrophic fungi. ●We reduced the presence of fine roots and their associated mycorrhizal fungi in a northern hardwood forest in New Hampshire, USA by soil trenching. Plots spanned a mycorrhizal gradient from 96% arbuscular mycorrhizal (AM) associations to 100% ectomycorrhizal (ECM)-associated tree basal area. We incubated four species of leaf litter within these plots in areas with reduced access to roots and mycorrhizal fungi and in adjacent areas with intact roots and mycorrhizal fungi. ●Over a period of 608 d, we found that litter decayed more rapidly in the presence of fine roots and mycorrhizal hyphae regardless of the dominant tree mycorrhizal association. Root and mycorrhizal exclusion reduced the activity of acid phosphatase on decomposing litter. ●Our results indicate that both AM- and ECM-associated fine roots stimulate litter decomposition in this system. These findings suggest that the effect of fine roots and mycorrhizal fungi on litter decay in a particular ecosystem likely depends on whether interactions between mycorrhizal roots and saprotrophic fungi are antagonistic or facilitative.


Subject(s)
Mycorrhizae , Ecosystem , Forests , Fungi , Plant Leaves , Plant Roots , Soil , Soil Microbiology , Trees
10.
J Med Entomol ; 58(1): 416-427, 2021 01 12.
Article in English | MEDLINE | ID: mdl-32901803

ABSTRACT

The prevalence of Lyme disease and other tick-borne diseases is dramatically increasing across the United States. While the rapid rise in Lyme disease is clear, the causes of it are not. Modeling Ixodes scapularis Say (Acari: Ixodidae), the primary Lyme disease vector in the eastern United States, presents an opportunity to disentangle the drivers of increasing Lyme disease, including climate, land cover, and host populations. We improved upon a recently developed compartment model of ordinary differential equations that simulates I. scapularis growth, abundance, and infection with Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) by adding land cover effects on host populations, refining the representation of growth stages, and evaluating output against observed data. We then applied this model to analyze the sensitivity of simulated I. scapularis dynamics across temperature and land cover in the northeastern United States. Specifically, we ran an ensemble of 232 simulations with temperature from Hanover, New Hampshire and Storrs, Connecticut, and land cover from Hanover and Cardigan in New Hampshire, and Windsor and Danielson in Connecticut. Consistent with observations, simulations of I. scapularis abundance are sensitive to temperature, with the warmer Storrs climate significantly increasing the number of questing I. scapularis at all growth stages. While there is some variation in modeled populations of I. scapularis infected with B. burgdorferi among land cover distributions, our analysis of I. scapularis response to land cover is limited by a lack of observations describing host populations, the proportion of hosts competent to serve as B. burgdorferi reservoirs, and I. scapularis abundance.


Subject(s)
Animal Distribution , Ixodes/physiology , Thermotolerance , Animals , Environment , Ixodes/growth & development , Larva/growth & development , Larva/physiology , Models, Biological , New England , Nymph/growth & development , Nymph/physiology
11.
Ecology ; 101(10): e03135, 2020 10.
Article in English | MEDLINE | ID: mdl-32691414

ABSTRACT

Population dynamics are shaped by species interactions with resources, competitors, enemies, and environmental fluctuations that alter the strength of these interactions. We used a food web approach to investigate the population dynamics of an abundant Arctic mosquito species, Aedes nigripes (Diptera: Culicidae). Specifically, we evaluated the importance of bottom-up variation in aquatic biofilms (food) and top-down predation from diving beetles (Colymbetes dolabratus, Coleoptera: Dytiscidae) on mosquito population performance. In spring 2018, we tracked mosquito and predator populations across eight ponds in western Greenland, measured biofilm productivity with standardized samplers, and estimated grazing pressure by invertebrate consumers with an in situ exclosure experiment. We also assessed the quality of biofilms as nutrition for mosquito larvae and evaluated pond attributes that might influence biofilm productivity and food quality. Our results indicated that mosquito population dynamics were more related to resource quality and intraspecific competition than to the density of predaceous diving beetles. Ponds with better quality biofilm tended to have more hatching larvae and those populations experienced higher per capita mortality. This aggregation of larvae in what would otherwise be the best mosquito ponds was enough to produce relatively low fitness. Thus, the landscape would support more mosquitoes if they instead distributed themselves to match predictions of the ideal free distribution. Although mortality rates were highest in ponds with the highest initial densities, the increased mortality was not generally enough to compensate for initial abundance, and 78% of the variation in the density of mosquitoes emerging from ponds was explained by the initial number of larvae in a pond. Resource quality was a strong predictor of consumer abundance, yet there was no evidence that biofilm grazing pressure was greater in ponds where mosquito density was higher. Collectively, our results suggest that mosquito ponds in western Greenland are a mosaic of source and pseudo-sink populations structured by oviposition tendencies, biofilm resource quality, and density-dependent larval mortality.


Subject(s)
Aedes , Coleoptera , Animals , Female , Greenland , Larva , Ponds
12.
Sci Data ; 7(1): 194, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572035

ABSTRACT

Wildland fires have a multitude of ecological effects in forests, woodlands, and savannas across the globe. A major focus of past research has been on tree mortality from fire, as trees provide a vast range of biological services. We assembled a database of individual-tree records from prescribed fires and wildfires in the United States. The Fire and Tree Mortality (FTM) database includes records from 164,293 individual trees with records of fire injury (crown scorch, bole char, etc.), tree diameter, and either mortality or top-kill up to ten years post-fire. Data span 142 species and 62 genera, from 409 fires occurring from 1981-2016. Additional variables such as insect attack are included when available. The FTM database can be used to evaluate individual fire-caused mortality models for pre-fire planning and post-fire decision support, to develop improved models, and to explore general patterns of individual fire-induced tree death. The database can also be used to identify knowledge gaps that could be addressed in future research.


Subject(s)
Fires , Forestry , Forests , Trees , Databases as Topic , United States
13.
Ecol Evol ; 9(21): 12216-12230, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31832155

ABSTRACT

A long-standing goal of invasion biology is to identify factors driving highly variable impacts of non-native species. Although hypotheses exist that emphasize the role of evolutionary history (e.g., enemy release hypothesis & defense-free space hypothesis), predicting the impact of non-native herbivorous insects has eluded scientists for over a century.Using a census of all 58 non-native conifer-specialist insects in North America, we quantified the contribution of over 25 factors that could affect the impact they have on their novel hosts, including insect traits (fecundity, voltinism, native range, etc.), host traits (shade tolerance, growth rate, wood density, etc.), and evolutionary relationships (between native and novel hosts and insects).We discovered that divergence times between native and novel hosts, the shade and drought tolerance of the novel host, and the presence of a coevolved congener on a shared host, were more predictive of impact than the traits of the invading insect. These factors built upon each other to strengthen our ability to predict the risk of a non-native insect becoming invasive. This research is the first to empirically support historically assumed hypotheses about the importance of evolutionary history as a major driver of impact of non-native herbivorous insects.Our novel, integrated model predicts whether a non-native insect not yet present in North America will have a one in 6.5 to a one in 2,858 chance of causing widespread mortality of a conifer species if established (R 2 = 0.91) Synthesis and applications. With this advancement, the risk to other conifer host species and regions can be assessed, and regulatory and pest management efforts can be more efficiently prioritized.

14.
Can J Infect Dis Med Microbiol ; 2019: 9817930, 2019.
Article in English | MEDLINE | ID: mdl-31636771

ABSTRACT

Warmer temperatures are expected to increase the incidence of Lyme disease through enhanced tick maturation rates and a longer season of transmission. In addition, there could be an increased risk of disease export because of infected mobile hosts, usually birds. A temperature-driven seasonal model of Borrelia burgdorferi (Lyme disease) transmission among four host types is constructed as a system of nonlinear ordinary differential equations. The model is developed and parametrized based on a collection of lab and field studies. The model is shown to produce biologically reasonable results for both the tick vector (Ixodes scapularis) and the hosts when compared to a different set of studies. The model is used to predict the response of Lyme disease risk to a mean annual temperature increase, based on current temperature cycles in Hanover, NH. Many of the risk measures suggested by the literature are shown to change with increased mean annual temperature. The most straightforward measure of disease risk is the abundance of infected questing ticks, averaged over a year. Compared to this measure, which is difficult and resource-intensive to track in the field, all other risk measures considered underestimate the rise of risk with rise in mean annual temperature. The measure coming closest was "degree days above zero." Disease prevalence in ticks and hosts showed less increase with rising temperature. Single field measurements at the height of transmission season did not show much change at all with rising temperature.

15.
Ecol Appl ; 29(7): e01974, 2019 10.
Article in English | MEDLINE | ID: mdl-31310674

ABSTRACT

Winter is an understudied but key period for the socioecological systems of northeastern North American forests. A growing awareness of the importance of the winter season to forest ecosystems and surrounding communities has inspired several decades of research, both across the northern forest and at other mid- and high-latitude ecosystems around the globe. Despite these efforts, we lack a synthetic understanding of how winter climate change may impact hydrological and biogeochemical processes and the social and economic activities they support. Here, we take advantage of 100 years of meteorological observations across the northern forest region of the northeastern United States and eastern Canada to develop a suite of indicators that enable a cross-cutting understanding of (1) how winter temperatures and snow cover have been changing and (2) how these shifts may impact both ecosystems and surrounding human communities. We show that cold and snow covered conditions have generally decreased over the past 100 years. These trends suggest positive outcomes for tree health as related to reduced fine root mortality and nutrient loss associated with winter frost but negative outcomes as related to the northward advancement and proliferation of forest insect pests. In addition to effects on vegetation, reductions in cold temperatures and snow cover are likely to have negative impacts on the ecology of the northern forest through impacts on water, soils, and wildlife. The overall loss of coldness and snow cover may also have negative consequences for logging and forest products, vector-borne diseases, and human health, recreation, and tourism, and cultural practices, which together represent important social and economic dimensions for the northern forest region. These findings advance our understanding of how our changing winters may transform the socioecological system of a region that has been defined by the contrasting rhythm of the seasons. Our research also identifies a trajectory of change that informs our expectations for the future as the climate continues to warm.


Subject(s)
Ecosystem , Snow , Canada , Climate Change , Cold Temperature , Forests , Humans , New England , Seasons
16.
J Therm Biol ; 72: 39-43, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29496013

ABSTRACT

Direct effects of temperature on plant pathogens can be crucial to determine the onset and epidemiology of disease. The pinewood nematode Bursaphelenchus xylophilus, the causal agent of the pine wilt disease (PWD), has a wide geographical distribution in Eurasia and East Asia, and local temperatures are considered determinant for the onset of the PWD. However, direct effects of temperature on this pathogen are never considered when forecasting its distribution and impact. In the present study we assessed: 1) at which temperatures is the development of wild populations of the pinewood nematode optimized; 2) if there is niche divergence on different populations from its wide distribution area. For this we studied two populations originated from different latitudes in eastern North America (NA), and used multi-model inference to evaluate the contributions of temperature, diet, and nematode population toward the growth rates of B. xylophilus. Although population origin had some effect on the predictive models, there seems to be niche conservatism, with temperatures of 28-29°C maximizing the growth rates of the pathogen. Thus, the use of the number of days in the summer with temperatures between 25 and 31°C would probably help to improve models forecasting B. xylophilus dispersion and PWD. The present work highlight the importance of considering adaptations to temperatures in forest pathogens with large geographical distributions, when building models forecasting the impact of climate on these organisms.


Subject(s)
Nematoda/growth & development , Temperature , Animals , Climate , Forests , Nematoda/pathogenicity
17.
J Anim Ecol ; 86(4): 730-738, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28423183

ABSTRACT

As global biodiversity continues to decline steeply, it is becoming increasingly important to understand diversity patterns at local and regional scales. Changes in land use and climate, nitrogen deposition and invasive species are the most important threats to global biodiversity. Because land use changes tend to benefit a few species but impede many, the expected outcome is generally decreasing population sizes, decreasing species richness at local and regional scales, and increasing similarity of species compositions across sites (biotic homogenization). Homogenization can be also driven by invasive species or effects of soil eutrophication propagating to higher trophic levels. In contrast, in the absence of increasing aridity, climate warming is predicted to generally increase abundances and species richness of poikilotherms at local and regional scales. We tested these predictions with data from one of the few existing monitoring programmes on biodiversity in the world dating to the 1960s, where the abundance of 878 species of macro-moths have been measured daily at seven sites across Hungary. Our analyses revealed a dramatic rate of regional species loss and homogenization of community compositions across sites. Species with restricted distribution range, specialized diet or dry grassland habitat were more likely than others to disappear from the community. In global context, the contrasting effects of climate change and land use changes could explain why the predicted enriching effects from climate warming are not always realized.


Subject(s)
Biodiversity , Climate Change , Moths , Animals , Ecosystem , Europe , Plants
18.
Ecol Appl ; 26(5): 1437-1455, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27755760

ABSTRACT

We review and synthesize information on invasions of nonnative forest insects and diseases in the United States, including their ecological and economic impacts, pathways of arrival, distribution within the United States, and policy options for reducing future invasions. Nonnative insects have accumulated in United States forests at a rate of ~2.5 per yr over the last 150 yr. Currently the two major pathways of introduction are importation of live plants and wood packing material such as pallets and crates. Introduced insects and diseases occur in forests and cities throughout the United States, and the problem is particularly severe in the Northeast and Upper Midwest. Nonnative forest pests are the only disturbance agent that has effectively eliminated entire tree species or genera from United States forests within decades. The resulting shift in forest structure and species composition alters ecosystem functions such as productivity, nutrient cycling, and wildlife habitat. In urban and suburban areas, loss of trees from streets, yards, and parks affects aesthetics, property values, shading, stormwater runoff, and human health. The economic damage from nonnative pests is not yet fully known, but is likely in the billions of dollars per year, with the majority of this economic burden borne by municipalities and residential property owners. Current policies for preventing introductions are having positive effects but are insufficient to reduce the influx of pests in the face of burgeoning global trade. Options are available to strengthen the defenses against pest arrival and establishment, including measures taken in the exporting country prior to shipment, measures to ensure clean shipments of plants and wood products, inspections at ports of entry, and post-entry measures such as quarantines, surveillance, and eradication programs. Improved data collection procedures for inspections, greater data accessibility, and better reporting would support better evaluation of policy effectiveness. Lack of additional action places the nation, local municipalities, and property owners at high risk of further damaging and costly invasions. Adopting stronger policies to reduce establishments of new forest insects and diseases would shift the major costs of control to the source and alleviate the economic burden now borne by homeowners and municipalities.


Subject(s)
Forests , Insecta/classification , Introduced Species , Animals , Environmental Monitoring , United States
19.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26378217

ABSTRACT

Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator-prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2-1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human-natural systems.


Subject(s)
Culicidae/growth & development , Temperature , Animals , Arctic Regions , Climate Change , Coleoptera/physiology , Greenland , Larva , Predatory Behavior , Reindeer , Time Factors
20.
Oecologia ; 176(3): 653-60, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25234372

ABSTRACT

Predation risk has strong effects on organismal physiology that can cascade to impact ecosystem structure and function. Physiological processes in general are sensitive to temperature. Thus, the temperature at which predators and prey interact may shape physiological response to predation risk. We measured and evaluated how temperature and predation risk affected growth rates of predaceous damselfly nymphs (Enallagma vesperum, Odonata: Coenagrionidae). First, we conducted growth trials at five temperatures crossed with two levels of predation risk (fish predator present versus absent) and measured growth rates, consumption rates, assimilation efficiencies, and production efficiencies of 107 individual damselflies. Second, we used a model to evaluate if and how component physiological responses to predation risk affected growth rates across temperatures. In the absence of mortality threat, growth rates of damselflies increased with warming until about 23.5 °C and then began to decline, a typical unimodal response to changes in temperature. Under predation risk, growth rates were lower and the shape of the thermal response was less apparent. Higher metabolic and survival costs induced by predation risk were only partially offset by changes in consumption rates and assimilation efficiencies and the magnitude of non-consumptive effects varied as a function of temperature. Furthermore, we documented that thermal physiology was mediated by predation risk, a known driver of organismal physiology that occurs in the context of species interactions. A general understanding of climatic impacts on ectothermic populations requires consideration of the community context of thermal physiology, including non-consumptive effects of predators.


Subject(s)
Food Chain , Odonata/physiology , Perciformes/physiology , Predatory Behavior , Animals , Nymph/growth & development , Nymph/physiology , Odonata/growth & development , Risk , Temperature , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...