Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biosci ; 14(1): 82, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890712

ABSTRACT

BACKGROUND: Neural progenitor cells (NPCs) can be cultivated from developing brains, reproducing many of the processes that occur during neural development. They can be isolated from a variety of animal models, such as transgenic mice carrying mutations in amyloid precursor protein (APP) and presenilin 1 and 2 (PSEN 1 and 2), characteristic of familial Alzheimer's disease (fAD). Modulating the development of these cells with inflammation-related peptides, such as bradykinin (BK) and its antagonist HOE-140, enables the understanding of the impact of such molecules in a relevant AD model. RESULTS: We performed a global gene expression analysis on transgenic neurospheres treated with BK and HOE-140. To validate the microarray data, quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) was performed on 8 important genes related to the immune response in AD such as CCL12, CCL5, CCL3, C3, CX3CR1, TLR2 and TNF alpha and Iba-1. Furthermore, comparative analysis of the transcriptional profiles was performed between treatments, including gene ontology and reactome enrichment, construction and analysis of protein-protein interaction networks and, finally, comparison of our data with human dataset from AD patients. The treatments affected the expression levels of genes mainly related to microglia-mediated neuroinflammatory responses, with BK promoting an increase in the expression of genes that enrich processes, biological pathways, and cellular components related to immune dysfunction, neurodegeneration and cell cycle. B2 receptor inhibition by HOE-140 resulted in the reduction of AD-related anomalies caused in this system. CONCLUSIONS: BK is an important immunomodulatory agent and enhances the immunological changes identified in transgenic neurospheres carrying the genetic load of AD. Bradykinin treatments modulate the expression rates of genes related to microglia-mediated neuroinflammation. Inhibiting bradykinin activity in Alzheimer's disease may slow disease progression.

2.
Stem Cell Rev Rep ; 19(6): 1800-1811, 2023 08.
Article in English | MEDLINE | ID: mdl-37129730

ABSTRACT

Proteins involved in the Alzheimer's disease (AD), such as amyloid precursor protein (APP) and presenilin-1 (PS1), play critical roles in early development of the central nervous system (CNS), as well as in innate immune and glial cell responses. Familial AD is associated with the presence of APPswe and PS1dE9 mutations. However, it is still unknown whether these mutations cause deficits in CNS development of carriers. We studied genome-wide gene expression profiles of differentiated neural progenitor cells (NPCs) from wild-type and APPswe/PS1dE9 mouse embryo telencephalon. The occurrence of strong innate immune and glial cell responses in APPswe/PS1dE9 neurospheres mainly involves microglial activation, inflammatory mediators and chemokines. APPswe/PS1dE9 neurospheres augmented up to 100-fold CCL12, CCL5, CCL3, C3, CX3CR1, TLR2 and TNF-alpha expression levels, when compared to WT neurospheres. Expression levels of the glia cell marker GFAP and microglia marker Iba-1 were up to 20-fold upregulated in APPswe/PS1dE9 neurospheres. The secretome of differentiated APPswe/PS1dE9 NPCs revealed enhanced chemoattraction of peripheral blood mononuclear cells. When evaluating the inferred protein interaction networks constructed from the array data, an improvement in astrocyte differentiation in APPswe/PS1dE9 neurospheres was evident in view of increased GFAP expression. Transgenic NPCs differentiated into neural phenotypes presented expression patterns of cytokine, glial cells, and inflammatory mediators characteristic of APPswe/PS1dE9 adult animals. Consequently, the neurogenic niche obtained from differentiation of embryonic APPswe/PS1dE9 neurospheres spontaneously presents several alterations observed in adult AD brains. Finally, our data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for familial AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Leukocytes, Mononuclear/metabolism , Mice, Transgenic , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Neuroglia/metabolism , Cell Differentiation/genetics , Inflammation Mediators , Immunity, Innate/genetics
3.
Methods Mol Biol ; 1468: 139-53, 2017.
Article in English | MEDLINE | ID: mdl-27662875

ABSTRACT

Changes in RNA stability have an important impact in the gene expression regulation. Different methods based on the transcription blockage with RNA polymerase inhibitors or metabolic labeling of newly synthesized RNAs have been developed to evaluate RNA decay rates in cultured cell. Combined with techniques to measure transcript abundance genome-wide, these methods have been used to reveal novel features of the eukaryotic transcriptome. The stability of protein-coding mRNAs is in general closely associated to the physiological function of their encoded proteins, with short-lived mRNAs being significantly enriched among regulatory genes whereas genes associated with housekeeping functions are predominantly stable. Likewise, the stability of noncoding RNAs (ncRNAs) seems to reflect their functional role in the cell. Thus, investigating RNA stability can provide insights regarding the function of yet uncharacterized regulatory ncRNAs. In this chapter, we discuss the methodologies currently used to estimate RNA decay and outline an experimental protocol for genome-wide estimation of RNA stability of protein-coding and lncRNAs. This protocol details the transcriptional blockage of cultured cells with actinomycin D, followed by RNA isolation at different time points, the determination of transcript abundance by qPCR/DNA oligoarray hybridization, and the calculation of individual transcript half-lives.


Subject(s)
RNA, Messenger/chemistry , RNA, Messenger/isolation & purification , RNA, Untranslated/chemistry , RNA, Untranslated/isolation & purification , Cell Culture Techniques , Dactinomycin/pharmacology , Gene Expression Profiling , Genes, Essential , Humans , Oligonucleotide Array Sequence Analysis , RNA Stability , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...