Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7762, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040699

ABSTRACT

Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.


Subject(s)
Rhabdoid Tumor , Humans , Child , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , Transcription Factors/genetics , Mutation , Promoter Regions, Genetic/genetics , Carcinogenesis/genetics
2.
PLoS Genet ; 19(10): e1010988, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37831730

ABSTRACT

Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD). The expanded Htt CAG repeats further reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Integrative transcriptomic analyses unveil a network of transcriptionally altered micro-RNAs and RNA-binding proteins (Celf, hnRNPs, Ptbp, Srsf, Upf1, Ythd2) which might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might alter neural fitness, contributing to HD pathogenesis.


Subject(s)
Huntington Disease , Mice , Animals , Huntington Disease/genetics , Huntington Disease/pathology , RNA, Circular/genetics , RNA Splicing , Alternative Splicing/genetics , Gene Expression Profiling , Trinucleotide Repeat Expansion/genetics , Huntingtin Protein/genetics
3.
Neuron ; 111(11): 1714-1731.e3, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37015226

ABSTRACT

The notion of exploiting the regenerative potential of the human brain in physiological aging or neurological diseases represents a particularly attractive alternative to conventional strategies for enhancing or restoring brain function. However, a major first question to address is whether the human brain does possess the ability to regenerate. The existence of human adult hippocampal neurogenesis (AHN) has been at the center of a fierce scientific debate for many years. The advent of single-cell transcriptomic technologies was initially viewed as a panacea to resolving this controversy. However, recent single-cell RNA sequencing studies in the human hippocampus yielded conflicting results. Here, we critically discuss and re-analyze previously published AHN-related single-cell transcriptomic datasets. We argue that, although promising, the single-cell transcriptomic profiling of AHN in the human brain can be confounded by methodological, conceptual, and biological factors that need to be consistently addressed across studies and openly discussed within the scientific community.


Subject(s)
Hippocampus , Transcriptome , Humans , Adult , Hippocampus/physiology , Neurogenesis/physiology , Gene Expression Profiling
4.
FEBS J ; 290(7): 1740-1764, 2023 04.
Article in English | MEDLINE | ID: mdl-36310106

ABSTRACT

The nuclear RNA surveillance mechanism is essential for cancer cell survival and is ensured by the RNA nuclear exosome including some co-factors, such as the RNA helicase MTR4. Recent studies suggest an involvement of DNA repair proteins such as apurinic/apyrimidinic (AP) endodeoxyribonuclease 1 (APE1), a major endodeoxyribonuclease of Base Excision Repair (BER), in RNA metabolism and RNA decay of oxidized and abasic RNA. Cisplatin (CDDP) and 5-fluorouracil (5-FU) are commonly used for the treatment of solid tumours. Whether APE1 is involved in the elimination of CDDP- or 5-FU-damaged RNA is unknown, as is its possible interaction with the nuclear exosome complex. Here, by using different human cancer cell models, we demonstrated that: (a) APE1 is involved in the elimination of damaged-RNA, upon CDDP- and 5-FU-treatments, in a MTR4-independent manner; (b) the interaction between APE1 and MTR4 is stimulated by CDDP- and 5-FU-treatments through lysine residues in the APE1 N-terminal region and is, in part, mediated by nucleic acids and (c) APE1- and MTR4-depletion lead to the generation of R-loop formation causing the activation of the DNA damage response (DDR) pathway through the ATM-p53-p21 axis. Our data demonstrate a role of MTR4 in DDR underpinning the function of APE1 in controlling the RNA quality upon genotoxic treatments with possible implications in chemoresistance.


Subject(s)
Exosomes , Nuclear Proteins , Humans , Cisplatin/pharmacology , DNA Damage , DNA Repair , Endodeoxyribonucleases/metabolism , Exosomes/metabolism , Fluorouracil/pharmacology , Nuclear Proteins/genetics , Protein Binding , RNA/genetics , RNA/metabolism
5.
Nucleic Acids Res ; 50(18): 10449-10468, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36156150

ABSTRACT

Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.


Subject(s)
Breast Neoplasms , MicroRNAs , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , MicroRNAs/genetics , Prognosis , Uracil/metabolism , Uracil-DNA Glycosidase/genetics
6.
Cell Mol Life Sci ; 79(8): 446, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35876890

ABSTRACT

Increasing evidence suggests different, not completely understood roles of microRNA biogenesis in the development and progression of lung cancer. The overexpression of the DNA repair protein apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an important cause of poor chemotherapeutic response in lung cancer and its involvement in onco-miRNAs biogenesis has been recently described. Whether APE1 regulates miRNAs acting as prognostic biomarkers of lung cancer has not been investigated, yet. In this study, we analyzed miRNAs differential expression upon APE1 depletion in the A549 lung cancer cell line using high-throughput methods. We defined a signature of 13 miRNAs that strongly correlate with APE1 expression in human lung cancer: miR-1246, miR-4488, miR-24, miR-183, miR-660, miR-130b, miR-543, miR-200c, miR-376c, miR-218, miR-146a, miR-92b and miR-33a. Functional enrichment analysis of this signature revealed its biological relevance in cancer cell proliferation and survival. We validated DICER1 as a direct functional target of the APE1-regulated miRNA-33a-5p and miR-130b-3p. Importantly, IHC analyses of different human tumors confirmed a negative correlation existing between APE1 and Dicer1 protein levels. DICER1 downregulation represents a prognostic marker of cancer development but the mechanisms at the basis of this phenomenon are still completely unknown. Our findings, suggesting that APE1 modulates DICER1 expression via miR-33a and miR-130b, reveal new mechanistic insights on DICER1 regulation, which are of relevance in lung cancer chemoresistance and cancer invasiveness.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , MicroRNAs/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism
7.
Cell Rep ; 36(8): 109568, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433038

ABSTRACT

Malignant rhabdoid tumors (MRTs) represent one of the most aggressive childhood malignancies. No effective treatment options are available, and prognosis is, therefore, dismal. Previous studies have demonstrated that tumor organoids capture the heterogeneity of patient tumors and can be used to predict patient response to therapy. Here, we perform drug screening on patient-derived normal and tumor organoids to identify MRT-specific therapeutic vulnerabilities. We identify neddylation inhibitor MLN4924 as a potential therapeutic agent. Mechanistically, we find increased neddylation in MRT organoids and tissues and show that MLN4924 induces a cytotoxic response via upregulation of the unfolded protein response. Lastly, we demonstrate in vivo efficacy in an MRT PDX mouse model, in which single-agent MLN4924 treatment significantly extends survival. Our study demonstrates that organoids can be used to find drugs selectively targeting tumor cells while leaving healthy cells unharmed and proposes neddylation inhibition as a therapeutic strategy in MRT.


Subject(s)
Cyclopentanes/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Organoids/metabolism , Pyrimidines/pharmacology , Rhabdoid Tumor , Unfolded Protein Response/drug effects , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Rhabdoid Tumor/drug therapy , Rhabdoid Tumor/metabolism , Xenograft Model Antitumor Assays
8.
OMICS ; 25(8): 495-512, 2021 08.
Article in English | MEDLINE | ID: mdl-34297901

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is among the most dangerous cancers with high mortality and lack of robust diagnostics and personalized/precision therapeutics. To achieve a systems-level understanding of tumorigenesis, unraveling of variations in the protein interactome and determination of key proteins exhibiting significant alterations in their interaction patterns during tumorigenesis are crucial. To this end, we have described differential protein-protein interactions and differentially interacting proteins (DIPs) in ESCC by utilizing the human protein interactome and transcriptome. Furthermore, DIP-centered modules were analyzed according to their potential in elucidation of disease mechanisms and improvement of efficient diagnostic, prognostic, and treatment strategies. Seven modules were presented as potential diagnostic, and 16 modules were presented as potential prognostic biomarker candidates. Importantly, our findings also suggest that 30 out of the 53 repurposed drugs were noncancer drugs, which could be used in the treatment of ESCC. Interestingly, 25 of these, proposed as novel drug candidates here, have not been previously associated in a context of esophageal cancer. In this context, risperidone and clozapine were validated for their growth inhibitory potential in three ESCC lines. Our findings offer a high potential for the development of innovative diagnostic, prognostic, and therapeutic strategies for further experimental studies in line with predictive diagnostics, targeted prevention, and personalization of medical services in ESCC specifically, and personalized cancer care broadly.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Biomarkers, Tumor/genetics , Cell Line, Tumor , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/diagnosis , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Transcriptome
9.
Sci Rep ; 10(1): 28, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31913336

ABSTRACT

APE1 is essential in cancer cells due to its central role in the Base Excision Repair pathway of DNA lesions and in the transcriptional regulation of genes involved in tumor progression/chemoresistance. Indeed, APE1 overexpression correlates with chemoresistance in more aggressive cancers, and APE1 protein-protein interactions (PPIs) specifically modulate different protein functions in cancer cells. Although important, a detailed investigation on the nature and function of protein interactors regulating APE1 role in tumor progression and chemoresistance is still lacking. The present work was aimed at analyzing the APE1-PPI network with the goal of defining bad prognosis signatures through systematic bioinformatics analysis. By using a well-characterized HeLa cell model stably expressing a flagged APE1 form, which was subjected to extensive proteomics analyses for immunocaptured complexes from different subcellular compartments, we here demonstrate that APE1 is a central hub connecting different subnetworks largely composed of proteins belonging to cancer-associated communities and/or involved in RNA- and DNA-metabolism. When we performed survival analysis in real cancer datasets, we observed that more than 80% of these APE1-PPI network elements is associated with bad prognosis. Our findings, which are hypothesis generating, strongly support the possibility to infer APE1-interactomic signatures associated with bad prognosis of different cancers; they will be of general interest for the future definition of novel predictive disease biomarkers. Future studies will be needed to assess the function of APE1 in the protein complexes we discovered. Data are available via ProteomeXchange with identifier PXD013368.


Subject(s)
Biomarkers, Tumor/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Neoplasms/pathology , Protein Interaction Maps , Biomarkers, Tumor/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Datasets as Topic , HeLa Cells , Humans , Neoplasms/genetics , Neoplasms/metabolism , Prognosis , Survival Rate
10.
DNA Repair (Amst) ; 82: 102675, 2019 10.
Article in English | MEDLINE | ID: mdl-31450087

ABSTRACT

The pathogenesis of colorectal cancer (CRC) involves different mechanisms, such as genomic and microsatellite instabilities. Recently, a contribution of the base excision repair (BER) pathway in CRC pathology has been emerged. In this context, the involvement of APE1 in the BER pathway and in the transcriptional regulation of genes implicated in tumor progression strongly correlates with chemoresistance in CRC and in more aggressive cancers. In addition, the APE1 interactome is emerging as an important player in tumor progression, as demonstrated by its interaction with Nucleophosmin (NPM1). For these reasons, APE1 is becoming a promising target in cancer therapy and a powerful prognostic and predictive factor in several cancer types. Thus, specific APE1 inhibitors have been developed targeting: i) the endonuclease activity; ii) the redox function and iii) the APE1-NPM1 interaction. Furthermore, mutated p53 is a common feature of advanced CRC. The relationship between APE1 inhibition and p53 is still completely unknown. Here, we demonstrated that the inhibition of the endonuclease activity of APE1 triggers p53-mediated effects on cell metabolism in HCT-116 colon cancer cell line. In particular, the inhibition of the endonuclease activity, but not of the redox function or of the interaction with NPM1, promotes p53 activation in parallel to sensitization of p53-expressing HCT-116 cell line to genotoxic treatment. Moreover, the endonuclease inhibitor affects mitochondrial activity in a p53-dependent manner. Finally, we demonstrated that 3D organoids derived from CRC patients are susceptible to APE1-endonuclease inhibition in a p53-status correlated manner, recapitulating data obtained with HCT-116 isogenic cell lines. These findings suggest the importance of further studies aimed at testing the possibility to target the endonuclease activity of APE1 in CRC.


Subject(s)
Colonic Neoplasms/pathology , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Tumor Suppressor Protein p53/metabolism , DNA Damage , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Methyl Methanesulfonate/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Mutation , Nucleophosmin , Tumor Suppressor Protein p53/genetics
11.
Methods Mol Biol ; 1986: 1-15, 2019.
Article in English | MEDLINE | ID: mdl-31115882

ABSTRACT

How the scientific community looks at molecular biology today is very different from that 50 years ago. During this time technological developments have led to many significant findings that have shook one of the most important foundations of molecular biology: the central dogma. In this chapter, we will mention how these changes occurred and gave birth to a very important field of today's science, bioinformatics. We will also mention briefly the newest topics of molecular biology regarding bioinformatics technologies and skills.


Subject(s)
Computational Biology/methods , DNA Methylation/genetics , Epigenesis, Genetic , Histones/metabolism , RNA/genetics , Transcriptome/genetics
13.
OMICS ; 21(5): 285-294, 2017 05.
Article in English | MEDLINE | ID: mdl-28375712

ABSTRACT

Ovarian cancer is one of the most common cancers and has a high mortality rate due to insidious symptoms and lack of robust diagnostics. A hitherto understudied concept in cancer pathogenesis may offer new avenues for innovation in ovarian cancer biomarker development. Cancer cells are characterized by an increase in network entropy, and several studies have exploited this concept to identify disease-associated gene and protein modules. We report in this study the changes in protein-protein interactions (PPIs) in ovarian cancer within a differential network (interactome) analysis framework utilizing the entropy concept and gene expression data. A compendium of six transcriptome datasets that included 140 samples from laser microdissected epithelial cells of ovarian cancer patients and 51 samples from healthy population was obtained from Gene Expression Omnibus, and the high confidence human protein interactome (31,465 interactions among 10,681 proteins) was used. The uncertainties of the up- or downregulation of PPIs in ovarian cancer were estimated through an entropy formulation utilizing combined expression levels of genes, and the interacting protein pairs with minimum uncertainty were identified. We identified 105 proteins with differential PPI patterns scattered in 11 modules, each indicating significantly affected biological pathways in ovarian cancer such as DNA repair, cell proliferation-related mechanisms, nucleoplasmic translocation of estrogen receptor, extracellular matrix degradation, and inflammation response. In conclusion, we suggest several PPIs as biomarker candidates for ovarian cancer and discuss their future biological implications as potential molecular targets for pharmaceutical development as well. In addition, network entropy analysis is a concept that deserves greater research attention for diagnostic innovation in oncology and tumor pathogenesis.


Subject(s)
Biomarkers, Tumor/metabolism , Entropy , Ovarian Neoplasms/metabolism , Protein Interaction Maps , Proteome , Biomarkers, Tumor/genetics , Cell Proliferation , DNA Repair , Down-Regulation , Extracellular Matrix , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Ovarian Neoplasms/genetics , Protein Interaction Mapping/methods , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Transcriptome , Up-Regulation
14.
Curr Genet ; 63(4): 709-722, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28013396

ABSTRACT

Among the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 µg/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value <0.05 and fold change >2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.


Subject(s)
Alkaloids/pharmacology , Biofilms/drug effects , Cell Movement/drug effects , Escherichia coli/drug effects , Alkaloids/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Biological Transport/drug effects , Biological Transport/genetics , Energy Metabolism/drug effects , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/drug therapy , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL