Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
2.
Front Oncol ; 13: 1269166, 2023.
Article in English | MEDLINE | ID: mdl-38074683

ABSTRACT

Background: While much progress has been accomplished in the understanding of radiation-induced immune effects in tumors, little is known regarding the mechanisms involved at the tumor draining lymph node (TDLN) level. The objective of this retrospective study was to assess the immune and biological changes arising in non-involved TDLNs upon node sparing concurrent chemoradiotherapy (CRT) of non-small cell lung cancer (NSCLC) tumors. Methods: Patients with proven localized (cN0M0) NSCLC, treated by radical surgery plus lymph node dissection with (CRT+) or without (CRT-) neoadjuvant chemoradiotherapy, whereby radiotherapy was targeted on the primary tumor with no significant incidental irradiation of the non-involved TDLN station (stations XI), were identified. Bulk RNA sequencing of TDLNs was performed and data were analyzed based on differential gene expression (DGE) and gene sets enrichment. Results: Sixteen patients were included and 25 TDLNs were analyzed: 6 patients in the CRT+ group (12 samples) and 10 patients in the CRT- group (13 samples). Overall, 1001 genes were differentially expressed between the two groups (CRT+ and CRT-). Analysis with g-profiler revealed that gene sets associated with antitumor immune response, inflammatory response, hypoxia, angiogenesis, epithelial mesenchymal transition and extra-cellular matrix remodeling were enriched in the CRT+ group, whereas only gene sets associated with B cells and B-cell receptor signaling were enriched in the CRT- group. Unsupervised dimensionality reduction identified two clusters of TDLNs from CRT+ patients, of which one cluster (cluster 1) exhibited higher expression of pathways identified as enriched in the overall CRT+ group in comparison to the CRT- group. In CRT+ cluster 1, 3 out of 3 patients had pathological complete response (pCR) or major pathological response (MPR) to neoadjuvant CRT, whereas only 1 out of 3 patients in the other CRT+ cluster (cluster 2) experienced MPR and none exhibited pCR. Conclusion: Neoadjuvant node sparing concurrent CRT of NSCLC patients is associated with distinct microenvironment and immunological patterns in non-involved TDLNs as compared to non-involved TDLNs from patients with non-irradiated tumors. Our data are in line with studies showing superiority of lymph node sparing irradiation of the primary tumor in the induction of antitumor immunity.

3.
Sci Immunol ; 8(84): eadg8841, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37289857

ABSTRACT

Despite the high prognostic value of immune infiltrates in colorectal cancer (CRC), metastatic disease remains resistant to immunotherapy by immune checkpoint blockade (ICB). Here, we show, in metastatic CRC preclinical models, that orthotopically implanted primary colon tumors exert a colon-specific antimetastatic effect on distant hepatic lesions. Enterotropic α4ß7 integrin-expressing neoantigen-specific CD8 T cells were key components of the antimetastatic effect. Accordingly, the presence of concomitant colon tumors improved control of liver lesions by anti-PD-L1 proof-of-concept immunotherapy and generated protective immune memory, whereas partial depletion of α4ß7+ cells abrogated control of metastases. Last, in patients with metastatic CRC, response to ICB was associated with expression of α4ß7 integrin in metastases and with circulating α4ß7+ CD8 T cells. Our findings identify a systemic cancer immunosurveillance role for gut-primed tumor-specific α4ß7+ CD8 T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Colonic Neoplasms , Humans , Prognosis , Integrins
4.
Cancers (Basel) ; 14(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35954341

ABSTRACT

Tumor-infiltrating exhausted PD-1hiCD39+ tumor-antigen (Ag)-specific CD4 T cells contribute to the response to immune checkpoint blockade (ICB), but their circulating counterparts, which could represent accessible biomarkers, have not been assessed. Here, we analyzed circulating PD-1+CD39+ CD4 T cells and show that this population was present at higher proportions in cancer patients than in healthy individuals and was enriched in activated HLA-DR+ and ICOS+ and proliferating KI67+ cells, indicative of their involvement in ongoing immune responses. Among memory CD4 T cells, this population contained the lowest proportions of cells producing effector cytokines, suggesting they were exhausted. In patients with HPV-induced malignancies, the PD-1+CD39+ population contained high proportions of HPV Ag-specific T cells. In patients treated by ICB for HPV-induced tumors, the proportion of circulating PD-1+CD39+ CD4 T cells was predictive of the clinical response. Our results identify CD39 expression as a surrogate marker of circulating helper tumor-Ag-specific CD4 T cells.

5.
Oncoimmunology ; 10(1): 1939518, 2021.
Article in English | MEDLINE | ID: mdl-34721945

ABSTRACT

γδ T lymphocytes diverge from conventional T CD8 lymphocytes for ontogeny, homing, and antigen specificity, but whether their differentiation in tumors also deviates was unknown. Using innovative analyses of our original and ~150 published single-cell RNA sequencing datasets validated by phenotyping of human tumors and murine models, here we present the first high-resolution view of human γδ T cell differentiation in cancer. While γδ T lymphocytes prominently encompass TCRVγ9 cells more differentiated than T CD8 in healthy donor's blood, a different scenario is unveiled in tumors. Solid tumors and lymphomas are infiltrated by a majority of TCRVγnon9 γδ T cells which are quantitatively correlated and remarkably aligned with T CD8 for differentiation, exhaustion, gene expression profile, and response to immune checkpoint therapy. This cancer-wide association is critical for developing cancer immunotherapies.


Subject(s)
Neoplasms , Transcriptome , Animals , CD8-Positive T-Lymphocytes , Cell Differentiation , Humans , Lymphocytes, Tumor-Infiltrating , Mice , Neoplasms/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocyte Subsets
6.
Front Oncol ; 11: 662236, 2021.
Article in English | MEDLINE | ID: mdl-33968769

ABSTRACT

Radiation-induced immune effects have been extensively deciphered over the last few years, leading to the concept of the dual immune effect of radiotherapy with both immunostimulatory and immunosuppressive effects. This explains why radiotherapy alone is not able to drive a strong anti-tumor immune response in most cases, hence underlining the rationale for combining both radiotherapy and immunotherapy. This association has generated considerable interest and hundreds of trials are currently ongoing to assess such an association in oncology. However, while some trials have provided unprecedented results or shown much promise, many hopes have been dashed. Questions remain, therefore, as to how to optimize the combination of these treatment modalities. This narrative review aims at revisiting the old, well-established concepts of radiotherapy relating to dose, fractionation, target volumes and organs at risk in the era of immunotherapy. We then propose potential innovative approaches to be further assessed when considering a radio-immunotherapy association, especially in the field of non-small-cell lung cancer (NSCLC). We finally propose a framework to optimize the association, with pragmatic approaches depending on the stage of the disease.

7.
Clin Cancer Res ; 27(4): 1037-1047, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33272982

ABSTRACT

PURPOSE: TNF blockers can be used to manage gastrointestinal inflammatory side effects following nivolumab and/or ipilimumab treatment in patients with advanced melanoma. Our preclinical data showed that anti-TNF could promote the efficacy of immune checkpoint inhibitors. PATIENTS AND METHODS: TICIMEL (NTC03293784) is an open-label, two-arm phase Ib clinical trial. Fourteen patients with advanced and/or metastatic melanoma (stage IIIc/IV) were enrolled. Patients were treated with nivolumab (1 mg/kg) and ipilimumab (3 mg/kg) combined to infliximab (5 mg/kg, N = 6) or certolizumab (400/200 mg, N = 8). The primary endpoint was safety and the secondary endpoint was antitumor activity. Adverse events (AEs) were graded according to the NCI Common Terminology Criteria for Adverse Events and response was assessed following RECIST 1.1. RESULTS: Only one dose-limiting toxicity was observed in the infliximab cohort. The two different combinations were found to be safe. We observed lower treatment-related AEs with infliximab as compared with certolizumab. In the certolizumab cohort, one patient was not evaluable for response. In this cohort, four of eight patients exhibited hepatobiliary disorders and seven of seven evaluable patients achieved objective response including four complete responses (CRs) and three partial responses (PRs). In the infliximab cohort, we observed one CR, two PRs, and three progressive diseases. Signs of activation and maturation of systemic T-cell responses were seen in patients from both cohorts. CONCLUSIONS: Our results show that both combinations are safe in human and provide clinical and biological activities. The high response rate in the certolizumab-treated patient cohort deserves further investigations.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Certolizumab Pegol/administration & dosage , Certolizumab Pegol/adverse effects , Female , Follow-Up Studies , Humans , Infliximab/administration & dosage , Infliximab/adverse effects , Ipilimumab/administration & dosage , Ipilimumab/adverse effects , Male , Melanoma/diagnosis , Melanoma/mortality , Melanoma/secondary , Middle Aged , Nivolumab/administration & dosage , Nivolumab/adverse effects , Progression-Free Survival , Skin Neoplasms/diagnosis , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Treatment Outcome , Tumor Necrosis Factor-alpha/antagonists & inhibitors
8.
JCI Insight ; 6(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33332284

ABSTRACT

Tumor antigen-specific CD4 T cells accumulate at tumor sites, evoking their involvement in antitumor effector functions in situ. Contrary to CD8 cytotoxic T lymphocyte exhaustion, that of CD4 T cells remains poorly appreciated. Here, using phenotypic, transcriptomic, and functional approaches, we characterized CD4 T cell exhaustion in patients with head and neck, cervical, and ovarian cancer. We identified a CD4 tumor-infiltrating lymphocyte (TIL) population, defined by high PD-1 and CD39 expression, which contained high proportions of cytokine-producing cells, although the quantity of cytokines produced by these cells was low, evoking an exhausted state. Terminal exhaustion of CD4 TILs was instated regardless of TIM-3 expression, suggesting divergence with CD8 T cell exhaustion. scRNA-Seq and further phenotypic analyses uncovered similarities with the CD8 T cell exhaustion program. In particular, PD-1hiCD39+ CD4 TILs expressed the exhaustion transcription factor TOX and the chemokine CXCL13 and were tumor antigen specific. In vitro, PD-1 blockade enhanced CD4 TIL activation, as evidenced by increased CD154 expression and cytokine secretion, leading to improved dendritic cell maturation and consequently higher tumor-specific CD8 T cell proliferation. Our data identify exhausted CD4 TILs as players in responsiveness to immune checkpoint blockade.


Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Helper-Inducer/immunology , Antigens, Neoplasm/immunology , Apyrase/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Gene Expression , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Humans , Immune Tolerance/genetics , Immunity, Cellular/genetics , In Vitro Techniques , Lymphocyte Activation/genetics , Lymphocyte Cooperation/genetics , Male , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Programmed Cell Death 1 Receptor/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Escape/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/immunology
9.
Immunity ; 53(4): 824-839.e10, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053331

ABSTRACT

CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/immunology , Neoplasms/immunology , T-Box Domain Proteins/immunology , Animals , Humans , Immune Checkpoint Inhibitors/immunology , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Transcriptome/immunology , Tumor Microenvironment/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
10.
Oncoimmunology ; 9(1): 1790125, 2020 07 12.
Article in English | MEDLINE | ID: mdl-32923152

ABSTRACT

Immunotherapies have achieved clinical benefit in many types of cancer but remain limited to a subset of patients in colorectal cancer (CRC). Resistance to immunotherapy can be attributed in part to tissue-specific factors constraining antitumor immunity. Thus, a better understanding of how the colon microenvironment shapes the immune response to CRC is needed to identify mechanisms of resistance to immunotherapies and guide the development of novel therapeutics. In an orthotopic mouse model of MC38-CRC, tumor progression was monitored by bioluminescence imaging and the immune signatures were assessed at a transcriptional level using NanoString and at a cellular level by flow cytometry. Despite initial tumor growth in all mice, only 25% to 35% of mice developed a progressive lethal CRC while the remaining animals spontaneously rejected their solid tumor. No tumor rejection was observed in the absence of adaptive immunity, nor when MC38 cells were injected in non-orthotopic locations, subcutaneously or into the liver. We observed that progressive CRC tumors exhibited a protumor immune response, characterized by a regulatory T-lymphocyte pattern, discernible shortly post-tumor implantation, as well as suppressive myeloid cells. In contrast, tumor-rejecting mice presented an early inflammatory response and an antitumor microenvironment enriched in CD8+ T cells. Taken together, our data demonstrate the role of the colon microenvironment in regulating the balance between anti or protumor immune responses. While emphasizing the relevance of the CRC orthotopic model, they set the basis for exploring the impact of the identified signatures in colon cancer response to immunotherapy.


Subject(s)
Colonic Neoplasms , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes , Humans , Immunotherapy , Mice
11.
Science ; 369(6506): 936-942, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32820119

ABSTRACT

Intestinal microbiota have been proposed to induce commensal-specific memory T cells that cross-react with tumor-associated antigens. We identified major histocompatibility complex (MHC) class I-binding epitopes in the tail length tape measure protein (TMP) of a prophage found in the genome of the bacteriophage Enterococcus hirae Mice bearing E. hirae harboring this prophage mounted a TMP-specific H-2Kb-restricted CD8+ T lymphocyte response upon immunotherapy with cyclophosphamide or anti-PD-1 antibodies. Administration of bacterial strains engineered to express the TMP epitope improved immunotherapy in mice. In renal and lung cancer patients, the presence of the enterococcal prophage in stools and expression of a TMP-cross-reactive antigen by tumors correlated with long-term benefit of PD-1 blockade therapy. In melanoma patients, T cell clones recognizing naturally processed cancer antigens that are cross-reactive with microbial peptides were detected.


Subject(s)
Antigens, Neoplasm/immunology , Bacteriophages/immunology , Enterococcus hirae/virology , Gastrointestinal Microbiome/immunology , Histocompatibility Antigens Class I/immunology , Immunotherapy/methods , Neoplasms/therapy , Viral Tail Proteins/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Cross Reactions , Cyclophosphamide/therapeutic use , Epitopes/immunology , Feces/virology , H-2 Antigens/immunology , Humans , Mice , Neoplasms/diet therapy , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Viral Tail Proteins/therapeutic use
12.
Cancers (Basel) ; 12(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630708

ABSTRACT

In the past 20 years, the immune system has increasingly been recognized as a major player in tumor cell control, leading to considerable advances in cancer treatment. While promising with regards to melanoma, renal cancer and non-small cell lung cancer, immunotherapy provides, for the time being, limited success in other cancers, including ovarian cancer, potentially due to insufficient immunogenicity or to a particularly immunosuppressive microenvironment. In this review, we provide a global description of the immune context of ovarian cancer, in particular epithelial ovarian cancer (EOC). We describe the adaptive and innate components involved in the EOC immune response, including infiltrating tumor-specific T lymphocytes, B lymphocytes, and natural killer and myeloid cells. In addition, we highlight the rationale behind the use of EOC preclinical mouse models to assess resistance to immunotherapy, and we summarize the main preclinical studies that yielded anti-EOC immunotherapeutic strategies. Finally, we focus on major published or ongoing immunotherapy clinical trials concerning EOC.

13.
J Immunother Cancer ; 8(1)2020 06.
Article in English | MEDLINE | ID: mdl-32503947

ABSTRACT

BACKGROUND: Besides the interest of an early detection of ovarian cancer, there is an urgent need for new predictive and prognostic biomarkers of tumor development and cancer treatment. In healthy patients, circulating blood monocytes are typically subdivided into classical (85%), intermediate (5%) and non-classical (10%) populations. Although these circulating monocyte subsets have been suggested as biomarkers in several diseases, few studies have investigate their potential as a predictive signature for tumor immune status,tumor growth and treatment adaptation. METHODS: In this study, we used a homogeneous cohort of 28 chemotherapy-naïve patients with ovarian cancer to evaluate monocyte subsets as biomarkers of the ascites immunological status. We evaluated the correlations between circulating monocyte subsets and immune cells and tumor burden in peritoneal ascites. Moreover, to validate the use of circulating monocyte subsets tofollow tumor progression and treatment response, we characterized blood monocytes from ovarian cancer patients included in a phase 1 clinical trial at baseline and following murlentamab treatment. RESULTS: We demonstrate here a robust expansion of the intermediate blood monocytes (IBMs) in ovarian cancer patients. We establish a significant positive correlation between IBM percentage and tumor-associate macrophages with a CCR2high/CD163high/CD206high/CD86lowprofile. Moreover, IBM expansion is associated with a decreased effector/regulatory T-cell ratio in ascites and with the presence of soluble immunosuppressive mediators. We also establish that IBM proportion positively correlates with the peritoneum tumor burden. Finally, the study of IBMs in patients with ovarian cancer under immunotherapy during the phase clinical trial supports IBMs to follow the evolution of tumor development and the treatment adaptation. CONCLUSIONS: This study, which links IBM level with immunosuppression and tumor burden in peritoneum, identifies IBMs as apotential predictive signature of ascites immune status and as a biomarker ofovarian cancer development and treatment response. TRIAL REGISTRATION NUMBER: EudraCT: 2015-004252-22 NCT02978755.


Subject(s)
Ascites/genetics , Biomarkers, Tumor/metabolism , Immunotherapy/methods , Lipopolysaccharide Receptors/metabolism , Monocytes/metabolism , Receptors, IgG/metabolism , Disease Progression , Female , Humans , Male , Tumor Microenvironment
14.
Cancer Immunol Res ; 8(7): 869-882, 2020 07.
Article in English | MEDLINE | ID: mdl-32295784

ABSTRACT

Although understanding of T-cell exhaustion is widely based on mouse models, its analysis in patients with cancer could provide clues indicating tumor sensitivity to immune checkpoint blockade (ICB). Data suggest a role for costimulatory pathways, particularly CD28, in exhausted T-cell responsiveness to PD-1/PD-L1 blockade. Here, we used single-cell transcriptomic, phenotypic, and functional approaches to dissect the relation between CD8+ T-cell exhaustion, CD28 costimulation, and tumor specificity in head and neck, cervical, and ovarian cancers. We found that memory tumor-specific CD8+ T cells, but not bystander cells, sequentially express immune checkpoints once they infiltrate tumors, leading, in situ, to a functionally exhausted population. Exhausted T cells were nonetheless endowed with effector and tumor residency potential but exhibited loss of the costimulatory receptor CD28 in comparison with their circulating memory counterparts. Accordingly, PD-1 inhibition improved proliferation of circulating tumor-specific CD8+ T cells and reversed functional exhaustion of specific T cells at tumor sites. In agreement with their tumor specificity, high infiltration of tumors by exhausted cells was predictive of response to therapy and survival in ICB-treated patients with head and neck cancer. Our results showed that PD-1 blockade-mediated proliferation/reinvigoration of circulating memory T cells and local reversion of exhaustion occur concurrently to control tumors.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , CD28 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Neoplasms, Glandular and Epithelial/drug therapy , Neoplasms, Glandular and Epithelial/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation/physiology , Female , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Single-Cell Analysis/methods , Survival Rate , Transcriptome
15.
NAR Genom Bioinform ; 2(2): lqaa025, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33575582

ABSTRACT

The development of single-cell transcriptomic technologies yields large datasets comprising multimodal informations, such as transcriptomes and immunophenotypes. Despite the current explosion of methods for pre-processing and integrating multimodal single-cell data, there is currently no user-friendly software to display easily and simultaneously both immunophenotype and transcriptome-based UMAP/t-SNE plots from the pre-processed data. Here, we introduce Single-Cell Virtual Cytometer, an open-source software for flow cytometry-like visualization and exploration of pre-processed multi-omics single cell datasets. Using an original CITE-seq dataset of PBMC from an healthy donor, we illustrate its use for the integrated analysis of transcriptomes and epitopes of functional maturation in human peripheral T lymphocytes. So this free and open-source algorithm constitutes a unique resource for biologists seeking for a user-friendly analytic tool for multimodal single cell datasets.

16.
J Immunother Cancer ; 7(1): 303, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727152

ABSTRACT

Immune checkpoint blockers (ICB) have revolutionized cancer therapy. However, complete response is observed in a minority of patients and most patients develop immune-related adverse events (irAEs). These include colitis, which can be treated with anti-tumor necrosis factor (TNF) antibodies such as Infliximab. In a recent issue of the Journal for ImmunoTherapy of Cancer, Badran et al. reported that co-administering Infliximab together with ICB to five cancer patients prevents colitis recurrence, with four of them exhibiting overall disease stability. The basis for this treatment strategy stemmed from our pre-clinical demonstration that TNF contributes to resistance to anti-PD-1 therapy. In agreement with this concept, we have shown that TNF blockers improve the anti-tumor therapeutic activity of ICB in mice and based on these findings we are currently evaluating the combination in melanoma patients enrolled in the TICIMEL clinical trial. Herein, (i) we discuss the scientific rationale for combining anti-TNF and ICB in cancer patients, (ii) comment on the paper published by Badran et al. and (iii) provide the TICIMEL clinical trial design.


Subject(s)
Melanoma , Tumor Necrosis Factor-alpha , Animals , Combined Modality Therapy , Humans , Immunotherapy , Mice , Neoplasm Recurrence, Local
17.
Cell Rep ; 26(1): 94-107.e7, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30605689

ABSTRACT

Despite the clinical success of blocking inhibitory immune checkpoint receptors such as programmed cell death-1 (PD-1) in cancer, the mechanisms controlling the expression of these receptors have not been fully elucidated. Here, we identify a post-transcriptional mechanism regulating PD-1 expression in T cells. Upon activation, the PDCD1 mRNA and ribonucleoprotein complexes coalesce into stress granules that require microtubules and the kinesin 1 molecular motor to proceed to translation. Hence, PD-1 expression is highly sensitive to microtubule or stress granule inhibitors targeting this pathway. Evidence from healthy donors and cancer patients reveals a common regulation for the translation of CTLA4, LAG3, TIM3, TIGIT, and BTLA but not of the stimulatory co-receptors OX40, GITR, and 4-1BB mRNAs. In patients, disproportionality analysis of immune-related adverse events for currently used microtubule drugs unveils a significantly higher risk of autoimmunity. Our findings reveal a fundamental mechanism of immunoregulation with great importance in cancer immunotherapy.


Subject(s)
Immunotherapy/methods , Microtubules/metabolism , T-Lymphocytes/immunology , Humans
18.
Oncoimmunology ; 5(4): e947175, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27141371

ABSTRACT

A strategic challenge facing clinicians treating patients afflicted with non-small cell lung cancer (NSCLC) is the development of approaches that combine conventional and novel therapies, including targeted therapies and immunotherapeutics. In a recent study, we explored the correlation between the expression of the tumor antigen family MAGE-A and the presence of EGFR and KRAS gene mutations in a large cohort of resected NSCLC patient specimens.

19.
Nat Rev Clin Oncol ; 13(7): 431-46, 2016 07.
Article in English | MEDLINE | ID: mdl-27030078

ABSTRACT

Around 15 years ago, imatinib mesylate (Gleevec(®) or Glivec(®), Novartis, Switzerland) became the very first 'targeted' anticancer drug to be clinically approved. This drug constitutes the quintessential example of a successful precision medicine that has truly changed the fate of patients with Philadelphia-chromosome-positive chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours by targeting the oncogenic drivers of these diseases, BCR-ABL1 and KIT and/or PDGFR, mutations in which lead to gain of function of tyrosine kinase activities. Nonetheless, the aforementioned paradigm might not fully explain the clinical success of this agent in these diseases. Growing evidence indicates that the immune system has a major role both in determining the therapeutic efficacy of imatinib (and other targeted agents) and in restraining the emergence of escape mutations. In this Review, we re-evaluate the therapeutic utility of imatinib in the context of the anticancer immunosurveillance system, and we discuss how this concept might inform on novel combination regimens that include imatinib with immunotherapies.


Subject(s)
Antineoplastic Agents/immunology , Gastrointestinal Stromal Tumors/immunology , Imatinib Mesylate/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Antigens, Neoplasm/drug effects , Antigens, Neoplasm/immunology , Antineoplastic Agents/therapeutic use , B7 Antigens/drug effects , B7 Antigens/immunology , Drug Approval , Forecasting , Gastrointestinal Stromal Tumors/drug therapy , Hematopoiesis/drug effects , Hematopoiesis/immunology , Humans , Imatinib Mesylate/therapeutic use , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunity, Cellular/drug effects , Immunologic Surveillance/drug effects , Immunologic Surveillance/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Molecular Chaperones/drug effects , Molecular Chaperones/immunology , Molecular Targeted Therapy/methods , Natural Cytotoxicity Triggering Receptor 3/drug effects , Natural Cytotoxicity Triggering Receptor 3/immunology , Protein-Tyrosine Kinases/drug effects , Protein-Tyrosine Kinases/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tumor Escape/drug effects , Tumor Escape/immunology , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor A/immunology
20.
Cell ; 165(2): 276-87, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27058662

ABSTRACT

Anticancer immune responses can be considered a desirable form of autoimmunity that may be profoundly shaped by the microbiome. Here, we discuss evidence for the microbiome's influence on anti-tumor immunosurveillance, including those that are indirect and can act at a distance, and we put forward hypotheses regarding mechanisms of how these effects are implemented. These may involve cross-reactivity between microbial and tumor antigens shaping T cell repertoires and/or microbial products stimulating pattern recognition receptors that influence the type and intensity of immune responses. Understanding how the microbiome impacts natural cancer immunosurveillance as well as treatment-induced immune responses will pave the way for more effective therapies and prophylactics.


Subject(s)
Biological Therapy , Microbiota , Neoplasms/immunology , Neoplasms/therapy , Animals , Dysbiosis , Humans , Hygiene Hypothesis , Monitoring, Immunologic
SELECTION OF CITATIONS
SEARCH DETAIL
...