Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Int J Mol Sci ; 24(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894804

ABSTRACT

The aim of this study was to analyze the link between periodontal microbiota and obesity in humans. We conducted a cohort study including 45 subjects with periodontitis divided into two groups: normo-weighted subjects with a body mass index (BMI) between 20 and 25 kg/m2 (n = 34) and obese subjects with a BMI > 30 kg/m2 (n = 11). Our results showed that obesity was associated with significantly more severe gingival inflammation according to Periodontal Inflamed Surface Area (PISA index). Periodontal microbiota taxonomic analysis showed that the obese (OB) subjects with periodontitis were characterized by a specific signature of subgingival microbiota with an increase in Gram-positive bacteria in periodontal pockets, associated with a decrease in microbiota diversity compared to that of normo-weighted subjects with periodontitis. Finally, periodontal treatment response was less effective in OB subjects with persisting periodontal inflammation, reflecting a still unstable periodontal condition and a risk of recurrence. To our knowledge, this study is the first exploring both salivary and subgingival microbiota of OB subjects. Considering that OB subjects are at higher periodontal risk, this could lead to more personalized preventive or therapeutic strategies for obese patients regarding periodontitis through the specific management of oral microbiota of obese patients.


Subject(s)
Microbiota , Periodontitis , Humans , Cohort Studies , Bacteria , Periodontitis/microbiology , Inflammation/complications , Obesity/complications
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675104

ABSTRACT

(1) Background: In developed countries, the prevalence of apical periodontitis (AP) varies from 20% to 50% for reasons that could be associated with the apical periodontitis microbiota ecology. (2) Methods: We performed a clinical study in the Odontology department of Toulouse hospital in France, to sequence the 16S rRNA gene of AP microbiota and collect clinical parameters from 94 patients. Forty-four patients were characterized with a PAI (periapical index of AP severity) score lower or equal to 3, while the others had superior scores (n = 50). (3) Results: The low diversity of granuloma microbiota is associated with the highest severity (PAI = 5) of periapical lesions (Odds Ratio 4.592, IC 95% [1.6329; 14.0728]; p = 0.001; notably, a lower relative abundance of Burkholderiaceae and a higher relative abundance of Pseudomonas and Prevotella). We also identified that high blood pressure (HBP) is associated with the increase in PAI scores. (4) Conclusions: Our data show that a low diversity of bacterial ecology of the AP is associated with severe PAI scores, suggesting a causal mechanism. Furthermore, a second risk factor was blood pressure associated with the severity of apical periodontitis.


Subject(s)
Hypertension , Microbiota , Periapical Periodontitis , Humans , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Microbiota/genetics
3.
BMC Microbiol ; 23(1): 34, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717776

ABSTRACT

BACKGROUND: Gut microbiota is involved in the development of liver diseases such as fibrosis. We and others identified that selected sets of gut bacterial DNA and bacteria translocate to tissues, notably the liver, to establish a non-infectious tissue microbiota composed of microbial DNA and a low frequency live bacteria. However, the precise set of bacterial DNA, and thereby the corresponding taxa associated with the early stages of fibrosis need to be identified. Furthermore, to overcome the impact of different group size and patient origins we adapted innovative statistical approaches. Liver samples with low liver fibrosis scores (F0, F1, F2), to study the early stages of the disease, were collected from Romania(n = 36), Austria(n = 10), Italy(n = 19), and Spain(n = 17). The 16S rRNA gene was sequenced. We considered the frequency, sparsity, unbalanced sample size between cohorts to identify taxonomic profiles and statistical differences. RESULTS: Multivariate analyses, including adapted spectral clustering with L1-penalty fair-discriminant strategies, and predicted metagenomics were used to identify that 50% of liver taxa associated with the early stage fibrosis were Enterobacteriaceae, Pseudomonadaceae, Xanthobacteriaceae and Burkholderiaceae. The Flavobacteriaceae and Xanthobacteriaceae discriminated between F0 and F1. Predicted metagenomics analysis identified that the preQ0 biosynthesis and the potential pathways involving glucoryranose and glycogen degradation were negatively associated with liver fibrosis F1-F2 vs F0. CONCLUSIONS: Without demonstrating causality, our results suggest first a role of bacterial translocation to the liver in the progression of fibrosis, notably at the earliest stages. Second, our statistical approach can identify microbial signatures and overcome issues regarding sample size differences, the impact of environment, and sets of analyses. TRIAL REGISTRATION: TirguMECCH ROLIVER Prospective Cohort for the Identification of Liver Microbiota, registration 4065/2014. Registered 01 01 2014.


Subject(s)
Liver Cirrhosis , Microbiota , Humans , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Prospective Studies , Fibrosis
4.
Eur J Nutr ; 61(4): 2201-2215, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35092460

ABSTRACT

PURPOSE: Excessive fat mass accumulation in obesity leads to diverse metabolic disorders, increased risks of cardiovascular diseases and in some cases, mortality. The aim of this study was to screen the actions of botanical extracts intended for oral use on human adipose tissue, using an in vitro screening model combining human intestinal cells with human adipose cells. This was to find the most effective extracts on lipid accumulation, UCP1 expression and ATP production in pre-adipocytes and on adipocyte lipolysis. METHODS: In this study, 25 individual plant extracts were screened for their effects on human adipose cells. Consequently, an original in vitro model was set up using the Caco-2 cell line, to mimic the intestinal passage of the extracts and then exposing human adipose cells to them. The biological actions of extracts were thus characterized, and compared with a coffee extract standard. The most effective extracts, and their combinations, were retained for their actions on lipid accumulation, the expression of the thermogenic effector UCP1 and ATP production in pre-adipocytes as well as on lipolysis activity of mature adipocytes. RESULTS: The biphasic culture system combining human Caco-2 cells with human adipose cells was verified as functional using the green coffee extract standard. Out of the 25 plant extracts studied, only 7 and their combinations were retained due to their potent effects on adipose cells biology. The data showed that compared to the coffee extract standard, Immortelle, Catechu, Carrot and Rose hip extracts were the most effective in reducing lipid accumulation and increased UCP1 expression in human pre-adipocytes. CONCLUSION: This study reveals the potential inhibitory effects on lipid accumulation and thermogenic activity of Immortelle, Catechu, Carrot and Rose hip extracts, and for the first time synergies in their combinations, using an in vitro model mimicking as closely as possible, human intestinal passage linked to adipose cells. These findings need to be confirmed by in vivo trials.


Subject(s)
Coffee , Lipolysis , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Adipocytes , Adipose Tissue/metabolism , Adipose Tissue, Brown , Caco-2 Cells , Coffee/metabolism , Humans , Lipids , Plant Extracts/metabolism , Plant Extracts/pharmacology
5.
Diagnostics (Basel) ; 11(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919425

ABSTRACT

The aim of this study was to analyze the link between oral microbiota and obesity in humans. We conducted a pilot study including 19 subjects with periodontitis divided into two groups: normo-weighted subjects (NWS) with a body mass index (BMI) between 20 and 25 (n = 9) and obese subjects (OS) with a BMI > 30 (n = 10). Obesity was associated with a poor oral health status characterized by an increased number of missing teeth and a higher score of periodontal-support loss associated with dysbiotic oral microbiota (39.45 ± 3.74 vs. 26.41 ± 11.21, p = 0.03 for the Chao 1 index). Oral microbiota taxonomic analysis showed that the abundance of the Capnocytophaga genus was higher (2.47% ± 3.02 vs. 0.27% ± 0.29, p = 0.04) in OS compared to NWS. Obese females (OF) were characterized by an increase in the Streptococcus genus (34.12% ± 14.29 vs. 10.55% ± 10.42, p = 0.05) compared to obese males (OM), where the Neisseria genus was increased (5.75% ± 5.03 vs. 58.05% ± 30.64, p = 0.008). These first data suggest that sex/gender is determinant in the link between oral dysbiotic microbiota and obesity in patients with periodontitis. Our results could lead to recommendations concerning therapeutic strategies for obese patients with periodontitis following the sex/gender.

6.
Acta Diabetol ; 58(8): 1035-1049, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33754166

ABSTRACT

OBJECTIVE: The intestinal microbiota to immune system crosstalk is a major regulator of metabolism and hence metabolic diseases. An impairment of the chemokine receptor CX3CR1, as a key regulator shaping intestinal microbiota under normal chow feeding, could be one of the early events of dysglycemia. METHODS: We studied the gut microbiota ecology by sequencing the gut and tissue microbiota. We studied its role in energy metabolism in CX3CR1-deficent and control mice using various bioassays notably the glycemic regulation during fasting and the respiratory quotient as two highly sensitive physiological features. We used antibiotics and prebiotics treatments, and germ free mouse colonization. RESULTS: We identify that CX3CR1 disruption impairs gut microbiota ecology and identified a specific signature associated to the genotype. The glycemic control during fasting and the respiratory quotient throughout the day are deeply impaired. A selected four-week prebiotic treatment modifies the dysbiotic microbiota and improves the fasting state glycemic control of the CX3CR1-deficent mice and following a glucose tolerance test. A 4 week antibiotic treatment also improves the glycemic control as well. Eventually, germ free mice colonized with the microbiota from CX3CR1-deficent mice developed glucose intolerance. CONCLUSIONS: CX3CR1 is a molecular mechanism in the control of the gut microbiota ecology ensuring the maintenance of a steady glycemia and energy metabolism. Its impairment could be an early mechanism leading to gut microbiota dysbiosis and the onset of metabolic disease.


Subject(s)
CX3C Chemokine Receptor 1/physiology , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome/physiology , Animals , Anti-Bacterial Agents/administration & dosage , Blood Glucose/physiology , CX3C Chemokine Receptor 1/deficiency , Dysbiosis , Energy Metabolism , Male , Mice , Mice, Inbred C57BL , Prebiotics/administration & dosage , Risk Factors
7.
Acta Diabetol ; 58(7): 881-897, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33723651

ABSTRACT

AIMS: Liraglutide controls type 2 diabetes (T2D) and inflammation. Gut microbiota regulates the immune system and causes at least in part type 2 diabetes. We here evaluated whether liraglutide regulates T2D through both gut microbiota and immunity in dysmetabolic mice. METHODS: Diet-induced dysmetabolic mice were treated for 14 days with intraperitoneal injection of liraglutide (100 µg/kg) or with vehicle or Exendin 4 (10 µg/kg) as controls. Various metabolic parameters, the intestinal immune cells were characterized and the 16SrDNA gene sequenced from the gut. The causal role of gut microbiota was shown using large spectrum antibiotics and by colonization of germ-free mice with the gut microbiota from treated mice. RESULTS: Besides, the expected metabolic impacts liraglutide treatment induced a specific gut microbiota specific signature when compared to vehicle or Ex4-treated mice. However, liraglutide only increased glucose-induced insulin secretion, reduced the frequency of Th1 lymphocytes, and increased that of TReg in the intestine. These effects were abolished by a concomitant antibiotic treatment. Colonization of germ-free mice with gut microbiota from liraglutide-treated diabetic mice improved glucose-induced insulin secretion and regulated the intestinal immune system differently from what observed in germ-free mice colonized with microbiota from non-treated diabetic mice. CONCLUSIONS: Altogether, our result demonstrated first the influence of liraglutide on gut microbiota and the intestinal immune system which could at least in part control glucose-induced insulin secretion.


Subject(s)
Gastrointestinal Microbiome/drug effects , Immune System/drug effects , Insulin Secretion/drug effects , Intestinal Mucosa/drug effects , Liraglutide/pharmacology , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL
8.
J Nutr Biochem ; 72: 108218, 2019 10.
Article in English | MEDLINE | ID: mdl-31473511

ABSTRACT

The polyphenols resveratrol (RSV) and curcumin (Cur) are phytoalexines and natural antibiotics with numerous pharmacological functions and metabolic impacts. Recent evidences show a broad control of gut microbiota by polyphenols which could influence glycemic regulation. The aim of this work is to estimate the respective effect of RSV and Cur alone or in association on the control of glycemia and on gut microbiota. A 5-week chronic treatment of hyperglycemic mice with RSV and/or Cur resulted in a differential effect on glucose tolerance test and modified gut microbiome. We precisely identified groups of bacteria representing a specific signature of the glycemic effect of RSV. Inferred metagenomic analysis and metabolic pathway prediction showed that the sulfur and branched-chain amino-acid (BCAA) metabolic activities are tightly correlated with the efficacy of RSV for the control of glycaemia. The impact on BCAA metabolism was further validated by serum metabolomics analysis. Altogether, we show that polyphenols specifically impact gut microbiota and corresponding metabolic functions which could be responsible for their therapeutic role.


Subject(s)
Blood/metabolism , Curcumin/pharmacology , Gastrointestinal Microbiome/drug effects , Hyperglycemia/diet therapy , Resveratrol/pharmacology , Amino Acids, Branched-Chain/metabolism , Animals , Blood/drug effects , Diet, High-Fat/adverse effects , Drug Therapy, Combination , Gastrointestinal Microbiome/physiology , Hyperglycemia/etiology , Hyperglycemia/microbiology , Male , Mice, Inbred C57BL , Prediabetic State/diet therapy , Prediabetic State/metabolism
9.
Mol Nutr Food Res ; 63(17): e1900403, 2019 09.
Article in English | MEDLINE | ID: mdl-31206248

ABSTRACT

SCOPE: Targeting gut microbiota dysbiosis by prebiotics is effective, though side effects such as abdominal bloating and flatulence may arise following high prebiotic consumption over weeks. The aim is therefore to optimize the current protocol for prebiotic use. METHODS AND RESULTS: To examine the prebiotic properties of plant extracts, two independent studies are conducted in ob/ob mice, over two weeks. In the first study, Porphyra umbilicalis and Melissa officinalis L. extracts are evaluated; in the second study, a high vs low dose of an Emblica officinalis Gaertn extract is assessed. These plant extracts affect gut microbiota, caecum metabolome, and induce a significant lower plasma triacylglycerols (TG) following treatment with P. umbilicalis and significantly higher plasma free fatty acids (FFA) following treatment with the low-dose of E. officinalis Gaertn. Glucose- and insulin-tolerance are not affected but white adipose tissue and liver gene expression are modified. In the first study, IL-6 hepatic gene expression is significantly (adjusted p = 0.0015) and positively (r = 0.80) correlated with the bacterial order Clostridiales in all mice. CONCLUSION: The data show that a two-week treatment with plant extracts affects the dysbiotic gut microbiota and changes both caecum metabolome and markers of lipid metabolism in ob/ob mice.


Subject(s)
Cecum/drug effects , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Plant Extracts/pharmacology , Adipose Tissue, White/drug effects , Adipose Tissue, White/physiology , Animals , Biomarkers/blood , Body Weight/drug effects , Cecum/metabolism , Gene Expression Regulation/drug effects , Glucose/metabolism , Liver/drug effects , Liver/physiology , Male , Melissa/chemistry , Mice, Inbred C57BL , Mice, Obese , Phyllanthus emblica/chemistry , Porphyra/chemistry , Prebiotics , Time Factors
10.
J Dent ; 79: 53-60, 2018 12.
Article in English | MEDLINE | ID: mdl-30292825

ABSTRACT

OBJECTIVE: Elite athletes are prone to develop oral diseases, which could increase the risk for injuries. The aim of this study was to evaluate the oral health and the composition of oral microbiota of elite rugby players compared to the general population. METHODS: We set up a case-control study by screening 24 professional rugby players (PRG) and 22 control patients (CG) for dental and gingival examinations and performed a taxonomic analysis and a predicted functional analysis of oral microbiota. RESULTS: The Decay, Missing and Filled (DMF) teeth index (5.54 ± 6.18 versus 2.14 ± 3.01; p = 0.01) and the frequency of gingivitis (58,33% versus 13.63%) were significantly increased in PRG compared to CG. PRG were characterized by a dysbiotic oral microbiota (Shannon Index: 3.32 ± 0.62 in PRG versus 3.79 ± 0.68 in CG; p = 0.03) with an increase of Streptococcus (58.43 ± 16.84 versus 42.60 ± 17.45; p = 0.005), the main genus implicated in caries. Predicted metagenomics of oral microbiota in rugby players was suggestive of a cariogenic metagenome favourable to the development of caries. CONCLUSIONS: Our study shows that the oral health of PRG was poorer than the general population. PRG are characterized by a dysbiotic oral microbiota with an increase of the relative abundance of Streptococcus genus, positively correlated to the weight and negatively correlated to the diversity of oral microbiota. CLINICAL SIGNIFICANCE: Dental screening should be included in the medical follow-up of professional rugby players as a part of their health management. New strategies such as using probiotics like Lactobacillus could help to control the dysbiosis of oral microbiota.


Subject(s)
Athletes , Microbiota , Oral Health , Case-Control Studies , Football , Humans , Sports
12.
Nat Med ; 24(7): 1070-1080, 2018 07.
Article in English | MEDLINE | ID: mdl-29942096

ABSTRACT

Hepatic steatosis is a multifactorial condition that is often observed in obese patients and is a prelude to non-alcoholic fatty liver disease. Here, we combine shotgun sequencing of fecal metagenomes with molecular phenomics (hepatic transcriptome and plasma and urine metabolomes) in two well-characterized cohorts of morbidly obese women recruited to the FLORINASH study. We reveal molecular networks linking the gut microbiome and the host phenome to hepatic steatosis. Patients with steatosis have low microbial gene richness and increased genetic potential for the processing of dietary lipids and endotoxin biosynthesis (notably from Proteobacteria), hepatic inflammation and dysregulation of aromatic and branched-chain amino acid metabolism. We demonstrated that fecal microbiota transplants and chronic treatment with phenylacetic acid, a microbial product of aromatic amino acid metabolism, successfully trigger steatosis and branched-chain amino acid metabolism. Molecular phenomic signatures were predictive (area under the curve = 87%) and consistent with the gut microbiome having an effect on the steatosis phenome (>75% shared variation) and, therefore, actionable via microbiome-based therapies.


Subject(s)
Diabetes Mellitus/genetics , Metagenomics , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , Animals , Cells, Cultured , Cohort Studies , Confounding Factors, Epidemiologic , Fecal Microbiota Transplantation , Female , Hepatocytes/metabolism , Humans , Metabolome , Metabolomics , Mice , Microbiota , Phenotype , Transcriptome/genetics
13.
Mol Nutr Food Res ; 62(3)2018 02.
Article in English | MEDLINE | ID: mdl-29105287

ABSTRACT

SCOPE: To examine the potential relationship among gene expression markers of adipose tissue browning, gut microbiota, and insulin sensitivity in humans. METHODS AND RESULTS: Gut microbiota composition and gene markers of browning are analyzed in subcutaneous (SAT) and visceral (VAT) adipose tissue from morbidly obese subjects (n = 34). Plasma acetate is measured through 1 H NMR and insulin sensitivity using euglycemic hyperinsulinemic clamp. Subjects with insulin resistance show an increase in the relative abundance (RA) of the phyla Bacteroidetes and Proteobacteria while RA of Firmicutes is decreased. In all subjects, Firmicutes RA is negatively correlated with HbA1c and fasting triglycerides, whereas Proteobacteria RA was negatively correlated with insulin sensitivity. Firmicutes RA is positively associated with markers of brown adipocytes (PRDM16, UCP1, and DIO2) in SAT, but not in VAT. Multivariate regression analysis indicates that Firmicutes RA contributes significantly to SAT PRDM16, UCP1, and DIO2 mRNA variance after controlling for age, BMI, HbA1c , or insulin sensitivity. Interestingly, Firmicutes RA, specifically those bacteria belonging to the Ruminococcaceae family, is positively associated with plasma acetate levels, which are also linked to SAT PRDM16 mRNA and insulin sensitivity. CONCLUSION: Gut microbiota composition is linked to adipose tissue browning and insulin action in morbidly obese subjects, possibly through circulating acetate.


Subject(s)
Acetates/blood , Adipose Tissue/physiology , Gastrointestinal Microbiome/physiology , Obesity, Morbid/microbiology , Adipose Tissue/physiopathology , Adipose Tissue, White/metabolism , Adipose Tissue, White/physiopathology , Adult , Biomarkers , DNA-Binding Proteins/genetics , Female , Glucose Transporter Type 4/genetics , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Resistance , Iodide Peroxidase/genetics , Male , Middle Aged , Obesity, Morbid/physiopathology , Transcription Factors/genetics , Uncoupling Protein 1/genetics , Iodothyronine Deiodinase Type II
14.
Gut ; 66(5): 872-885, 2017 05.
Article in English | MEDLINE | ID: mdl-26838600

ABSTRACT

OBJECTIVE: To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. DESIGN: We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. RESULTS: Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. CONCLUSIONS: We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis.


Subject(s)
Adaptive Immunity , Bacteroidaceae Infections/complications , Dysbiosis/immunology , Insulin Resistance/immunology , Periodontitis/immunology , Periodontitis/prevention & control , Porphyromonas gingivalis , Animals , Cell Transplantation , Diet, High-Fat , Disease Models, Animal , Dysbiosis/microbiology , Dysbiosis/prevention & control , Female , Gingiva/microbiology , Hyperglycemia/immunology , Hyperglycemia/microbiology , Interferon-gamma/blood , Interleukin-6/blood , Lipopolysaccharides/immunology , Lymph Nodes/cytology , Lymphocytes , Mice , Mice, Inbred C57BL , Microbiota , Periodontitis/microbiology , Periodontitis/pathology , Porphyromonas gingivalis/immunology , Random Allocation , Spleen/cytology , Vaccination
15.
Mol Metab ; 5(6): 392-403, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27257599

ABSTRACT

OBJECTIVE: To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. METHODS: We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. RESULTS: Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. CONCLUSIONS: Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.

16.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1091-101, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27033119

ABSTRACT

Periodontitis and type 2 diabetes are connected pandemic diseases, and both are risk factors for cardiovascular complications. Nevertheless, the molecular factors relating these two chronic pathologies are poorly understood. We have shown that, in response to a long-term fat-enriched diet, mice present particular gut microbiota profiles related to three metabolic phenotypes: diabetic-resistant (DR), intermediate (Inter), and diabetic-sensitive (DS). Moreover, many studies suggest that a dysbiosis of periodontal microbiota could be associated with the incidence of metabolic and cardiac diseases. We investigated whether periodontitis together with the periodontal microbiota may also be associated with these different cardiometabolic phenotypes. We report that the severity of glucose intolerance is related to the severity of periodontitis and cardiac disorders. In detail, alveolar bone loss was more accentuated in DS than Inter, DR, and normal chow-fed mice. Molecular markers of periodontal inflammation, such as TNF-α and plasminogen activator inhibitor-1 mRNA levels, correlated positively with both alveolar bone loss and glycemic index. Furthermore, the periodontal microbiota of DR mice was dominated by the Streptococcaceae family of the phylum Firmicutes, whereas the periodontal microbiota of DS mice was characterized by increased Porphyromonadaceae and Prevotellaceae families. Moreover, in DS mice the periodontal microbiota was indicated by an abundance of the genera Prevotella and Tannerella, which are major periodontal pathogens. PICRUSt analysis of the periodontal microbiome highlighted that prenyltransferase pathways follow the cardiometabolic adaptation to a high-fat diet. Finally, DS mice displayed a worse cardiac phenotype, percentage of fractional shortening, heart rhythm, and left ventricle weight-to-tibia length ratio than Inter and DR mice. Together, our data show that periodontitis combined with particular periodontal microbiota and microbiome is associated with metabolic adaptation to a high-fat diet related to the severity of cardiometabolic alteration.


Subject(s)
Adaptation, Physiological , Cardiovascular Diseases/metabolism , Diet, High-Fat , Glucose Intolerance , Microbiota , Periodontitis/microbiology , Ventricular Function , Animals , Cardiovascular Diseases/complications , Cardiovascular Diseases/microbiology , Dimethylallyltranstransferase/metabolism , Dysbiosis/microbiology , Male , Mice , Mice, Inbred C57BL , Periodontitis/complications , Plasminogen Activator Inhibitor 1/metabolism , Prevotella/isolation & purification , Streptococcaceae/isolation & purification , Tumor Necrosis Factor-alpha/metabolism
17.
PLoS One ; 10(4): e0121563, 2015.
Article in English | MEDLINE | ID: mdl-25875769

ABSTRACT

In the aim of testing tools for tracing cell trafficking of exogenous cholesterol, two fluorescent derivatives of cholesterol, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), with distinctive chemico-physical characteristics, have been compared for their cell incorporation properties, using two cell models differently handling cholesterol, with two incorporation routes. In the Caco-2 cell model, the cholesterol probes were delivered in bile salt micelles, as a model of intestinal absorption. The two probes displayed contrasting behaviors for cell uptake characteristics, cell staining, and efflux kinetics. In particular, Pyr-met-Chol cell incorporation involved SR-BI, while that of NBD-Chol appeared purely passive. In the PC-3 cell model, which overexpresses lipoprotein receptors, the cholesterol probes were delivered via the serum components, as a model of systemic delivery. We showed that Pyr-met-Chol-labelled purified LDL or HDL were able to specifically deliver Pyr-met-Chol to the PC-3 cells, while NBD-Chol incorporation was independent of lipoproteins. Observations by fluorescence microscopy evidenced that, while NBD-Chol readily stained the cytosolic lipid droplets, Pyr-met-Chol labelling led to the intense staining of intracellular structures of membranous nature, in agreement with the absence of detectable esterification of Pyr-met-Chol. A 48 h incubation of PC-3 cells with either Pyr-met-Chol-labelled LDL or HDL gave same staining patterns, mainly colocalizing with Lamp1, caveolin-1 and CD63. These data indicated convergent trafficking downwards their respective receptors, LDL-R and SR-BI, toward the cholesterol-rich internal membrane compartments, late endosomes and multivesicular bodies. Interestingly, Pyr-met-Chol staining of these structures exhibited a high excimer fluorescence emission, revealing their ordered membrane environment, and indicating that Pyr-met-Chol behaves as a fair cholesterol tracer regarding its preferential incorporation into cholesterol-rich domains. We conclude that, while NBD-Chol is a valuable marker of cholesterol esterification, Pyr-met-Chol is a reliable new lipoprotein fluorescent marker which allows to probe specific intracellular trafficking of cholesterol-rich membranes.


Subject(s)
Cholesterol/metabolism , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Biological Transport , Caco-2 Cells , Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol/analogs & derivatives , Cholesterol/chemistry , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, LDL/chemistry , Pyrenes/chemistry
18.
Biochem Biophys Res Commun ; 440(4): 533-8, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24103760

ABSTRACT

Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described "lipid rafts" in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD-Chol non-specifically delivered to the cells.


Subject(s)
Cholesterol/analogs & derivatives , Cholesterol/chemistry , Fluorescent Dyes/chemistry , Lipoproteins, LDL/chemistry , Staining and Labeling , Cell Line, Tumor , Cells, Cultured , Humans , Lipoproteins, HDL/blood , Lipoproteins, HDL/chemistry , Lipoproteins, LDL/blood , Membranes/chemistry , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL