Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Comput Methods Programs Biomed ; 248: 108111, 2024 May.
Article in English | MEDLINE | ID: mdl-38479147

ABSTRACT

BACKGROUND AND OBJECTIVE: Training deep learning models for medical image segmentation require large annotated datasets, which can be expensive and time-consuming to create. Active learning is a promising approach to reduce this burden by strategically selecting the most informative samples for segmentation. This study investigates the use of active learning for efficient left ventricle segmentation in echocardiography with sparse expert annotations. METHODS: We adapt and evaluate various sampling techniques, demonstrating their effectiveness in judiciously selecting samples for segmentation. Additionally, we introduce a novel strategy, Optimised Representativeness Sampling, which combines feature-based outliers with the most representative samples to enhance annotation efficiency. RESULTS: Our findings demonstrate a substantial reduction in annotation costs, achieving a remarkable 99% upper bound performance while utilising only 20% of the labelled data. This equates to a reduction of 1680 images needing annotation within our dataset. When applied to a publicly available dataset, our approach yielded a remarkable 70% reduction in required annotation efforts, representing a significant advancement compared to baseline active learning strategies, which achieved only a 50% reduction. Our experiments highlight the nuanced performance of diverse sampling strategies across datasets within the same domain. CONCLUSIONS: The study provides a cost-effective approach to tackle the challenges of limited expert annotations in echocardiography. By introducing a distinct dataset, made publicly available for research purposes, our work contributes to the field's understanding of efficient annotation strategies in medical image segmentation.


Subject(s)
Echocardiography , Heart Ventricles , Heart Ventricles/diagnostic imaging , Image Processing, Computer-Assisted
2.
Comput Biol Med ; 171: 108192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38417384

ABSTRACT

Doppler echocardiography is a widely utilised non-invasive imaging modality for assessing the functionality of heart valves, including the mitral valve. Manual assessments of Doppler traces by clinicians introduce variability, prompting the need for automated solutions. This study introduces an innovative deep learning model for automated detection of peak velocity measurements from mitral inflow Doppler images, independent from Electrocardiogram information. A dataset of Doppler images annotated by multiple expert cardiologists was established, serving as a robust benchmark. The model leverages heatmap regression networks, achieving 96% detection accuracy. The model discrepancy with the expert consensus falls comfortably within the range of inter- and intra-observer variability in measuring Doppler peak velocities. The dataset and models are open-source, fostering further research and clinical application.


Subject(s)
Deep Learning , Blood Flow Velocity , Echocardiography, Doppler/methods , Mitral Valve/diagnostic imaging , Ultrasonography, Doppler
3.
J Pathol ; 260(4): 431-442, 2023 08.
Article in English | MEDLINE | ID: mdl-37294162

ABSTRACT

Oral squamous cell carcinoma (OSCC) is amongst the most common cancers, with more than 377,000 new cases worldwide each year. OSCC prognosis remains poor, related to cancer presentation at a late stage, indicating the need for early detection to improve patient prognosis. OSCC is often preceded by a premalignant state known as oral epithelial dysplasia (OED), which is diagnosed and graded using subjective histological criteria leading to variability and prognostic unreliability. In this work, we propose a deep learning approach for the development of prognostic models for malignant transformation and their association with clinical outcomes in histology whole slide images (WSIs) of OED tissue sections. We train a weakly supervised method on OED cases (n = 137) with malignant transformation (n = 50) and mean malignant transformation time of 6.51 years (±5.35 SD). Stratified five-fold cross-validation achieved an average area under the receiver-operator characteristic curve (AUROC) of 0.78 for predicting malignant transformation in OED. Hotspot analysis revealed various features of nuclei in the epithelium and peri-epithelial tissue to be significant prognostic factors for malignant transformation, including the count of peri-epithelial lymphocytes (PELs) (p < 0.05), epithelial layer nuclei count (NC) (p < 0.05), and basal layer NC (p < 0.05). Progression-free survival (PFS) using the epithelial layer NC (p < 0.05, C-index = 0.73), basal layer NC (p < 0.05, C-index = 0.70), and PELs count (p < 0.05, C-index = 0.73) all showed association of these features with a high risk of malignant transformation in our univariate analysis. Our work shows the application of deep learning for the prognostication and prediction of PFS of OED for the first time and offers potential to aid patient management. Further evaluation and testing on multi-centre data is required for validation and translation to clinical practice. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Precancerous Conditions , Humans , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Biomarkers, Tumor/analysis , Hyperplasia/pathology , Precancerous Conditions/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Lymphocytes/pathology , Head and Neck Neoplasms/pathology
4.
J Med Imaging (Bellingham) ; 8(3): 034002, 2021 May.
Article in English | MEDLINE | ID: mdl-34179218

ABSTRACT

Purpose: Echocardiography is the most commonly used modality for assessing the heart in clinical practice. In an echocardiographic exam, an ultrasound probe samples the heart from different orientations and positions, thereby creating different viewpoints for assessing the cardiac function. The determination of the probe viewpoint forms an essential step in automatic echocardiographic image analysis. Approach: In this study, convolutional neural networks are used for the automated identification of 14 different anatomical echocardiographic views (larger than any previous study) in a dataset of 8732 videos acquired from 374 patients. Differentiable architecture search approach was utilized to design small neural network architectures for rapid inference while maintaining high accuracy. The impact of the image quality and resolution, size of the training dataset, and number of echocardiographic view classes on the efficacy of the models were also investigated. Results: In contrast to the deeper classification architectures, the proposed models had significantly lower number of trainable parameters (up to 99.9% reduction), achieved comparable classification performance (accuracy 88.4% to 96%, precision 87.8% to 95.2%, recall 87.1% to 95.1%) and real-time performance with inference time per image of 3.6 to 12.6 ms. Conclusion: Compared with the standard classification neural network architectures, the proposed models are faster and achieve comparable classification performance. They also require less training data. Such models can be used for real-time detection of the standard views.

5.
Comput Biol Med ; 133: 104373, 2021 06.
Article in English | MEDLINE | ID: mdl-33857775

ABSTRACT

BACKGROUND: Accurate identification of end-diastolic and end-systolic frames in echocardiographic cine loops is important, yet challenging, for human experts. Manual frame selection is subject to uncertainty, affecting crucial clinical measurements, such as myocardial strain. Therefore, the ability to automatically detect frames of interest is highly desirable. METHODS: We have developed deep neural networks, trained and tested on multi-centre patient data, for the accurate identification of end-diastolic and end-systolic frames in apical four-chamber 2D multibeat cine loop recordings of arbitrary length. Seven experienced cardiologist experts independently labelled the frames of interest, thereby providing infallible annotations, allowing for observer variability measurements. RESULTS: When compared with the ground-truth, our model shows an average frame difference of -0.09 ± 1.10 and 0.11 ± 1.29 frames for end-diastolic and end-systolic frames, respectively. When applied to patient datasets from a different clinical site, to which the model was blind during its development, average frame differences of -1.34 ± 3.27 and -0.31 ± 3.37 frames were obtained for both frames of interest. All detection errors fall within the range of inter-observer variability: [-0.87, -5.51]±[2.29, 4.26] and [-0.97, -3.46]±[3.67, 4.68] for ED and ES events, respectively. CONCLUSIONS: The proposed automated model can identify multiple end-systolic and end-diastolic frames in echocardiographic videos of arbitrary length with performance indistinguishable from that of human experts, but with significantly shorter processing time.


Subject(s)
Echocardiography , Neural Networks, Computer , Diastole , Humans , Observer Variation
6.
Med Biol Eng Comput ; 58(6): 1309-1323, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32253607

ABSTRACT

Speckle tracking is the most prominent technique used to estimate the regional movement of the heart based on echocardiograms. In this study, we propose an optimised-based block matching algorithm to perform speckle tracking iteratively. The proposed technique was evaluated using a publicly available synthetic echocardiographic dataset with known ground-truth from several major vendors and for healthy/ischaemic cases. The results were compared with the results from the classic (standard) two-dimensional block matching. The proposed method presented an average displacement error of 0.57 pixels, while classic block matching provided an average error of 1.15 pixels. When estimating the segmental/regional longitudinal strain in healthy cases, the proposed method, with an average of 0.32 ± 0.53, outperformed the classic counterpart, with an average of 3.43 ± 2.84. A similar superior performance was observed in ischaemic cases. This method does not require any additional ad hoc filtering process. Therefore, it can potentially help to reduce the variability in the strain measurements caused by various post-processing techniques applied by different implementations of the speckle tracking. Graphical Abstract Standard block matching versus proposed iterative block matching approach.


Subject(s)
Diagnosis, Computer-Assisted/methods , Echocardiography/methods , Myocardial Ischemia/diagnosis , Algorithms , Databases, Factual , Humans , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL