Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 37(12): e23246, 2023 12.
Article in English | MEDLINE | ID: mdl-37990646

ABSTRACT

There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.


Subject(s)
Erectile Dysfunction , Space Flight , Weightlessness , Humans , Rats , Male , Animals , Weightlessness/adverse effects , Erectile Dysfunction/etiology , Hindlimb Suspension
2.
Life Sci ; 310: 121082, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36252696

ABSTRACT

AIMS: Erectile dysfunction is a common complication within many pathological conditions associated with low testosterone. Testosterone deficiency increases oxidative stress in the penile tissue that contributes to endothelial dysfunction and subsequent erectile dysfunction. Current therapies do not ameliorate oxidative stress so targeting oxidative stress may improve erectile dysfunction. Resveratrol and MitoQ are two prospective drugs that have antioxidant-like properties and may be useful to improve erectile dysfunction induced by androgen deprivation. MATERIALS AND METHODS: We castrated 12-week-old male C57BL/6 mice and performed an eight-week intervention with oral delivery of resveratrol or MitoQ at low and high doses. We assessed vascular reactivity of the corpus cavernosum and internal pudendal arteries (IPA) through dose-dependent responses to vasodilatory, vasocontractile, and neurogenic stimuli in a myograph system. We performed qRT-PCR to measure expression changes of 18 antioxidant genes in the corpus cavernosum. KEY FINDINGS: Castration significantly impaired erectile function via impaired endothelial-dependent and-independent relaxation, and increased constriction of the corpus cavernosum, and induced severe endothelial dysfunction of the IPA. Castration decreased expression of 8 of the antioxidant genes investigated. Resveratrol and MitoQ were ineffective in reversing the effects of androgen deprivation on vascular reactivity, however high-dose resveratrol treatment upregulated several key antioxidant genes, including Cat, Sod1, Gstm1, and Prdx3. SIGNIFICANCE: Our findings suggest that oral resveratrol and MitoQ treatment may provide protection to the corpus cavernosum under androgen deprived conditions by stimulating endogenous antioxidant systems. However, they may need to be paired with vasoactive drugs to reverse erectile dysfunction under androgen deprived conditions.


Subject(s)
Erectile Dysfunction , Prostatic Neoplasms , Animals , Mice , Humans , Male , Erectile Dysfunction/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Resveratrol/pharmacology , Resveratrol/therapeutic use , Androgens/pharmacology , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Mice, Inbred C57BL , Prostatic Neoplasms/pathology , Penis/pathology , Orchiectomy/adverse effects , Disease Models, Animal , Testosterone/pharmacology , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL