Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 11379, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059738

ABSTRACT

The evolution of obligate ectoparasitism in blowflies (Diptera: Calliphoridae) has intrigued scientists for over a century, and surprisingly, the genetics underlying this lifestyle remain largely unknown. Blowflies use odors to locate food and oviposition sites; therefore, olfaction might have played a central role in niche specialization within the group. In insects, the coreceptor Orco is a required partner for all odorant receptors (ORs), a major gene family involved in olfactory-evoked behaviors. Hence, we characterized the Orco gene in the New World screwworm, Cochliomyia hominivorax, a blowfly that is an obligate ectoparasite of warm-blooded animals. In contrast, most of the closely related blowflies are scavengers that lay their eggs on dead animals. We show that the screwworm Orco orthologue (ChomOrco) is highly conserved within Diptera, showing signals of strong purifying selection. Expression of ChomOrco is broadly detectable in chemosensory appendages, and is related to morphological, developmental, and behavioral aspects of the screwworm biology. We used CRISPR/Cas9 to disrupt ChomOrco and evaluate the consequences of losing the OR function on screwworm behavior. In two-choice assays, Orco mutants displayed an impaired response to floral-like and animal host-associated odors, suggesting that OR-mediated olfaction is involved in foraging and host-seeking behaviors in C. hominivorax. These results broaden our understanding of the chemoreception basis of niche occupancy by blowflies.


Subject(s)
Diptera/physiology , Feeding Behavior , Host-Seeking Behavior , Insect Proteins/metabolism , Receptors, Odorant/metabolism , Animals , Diptera/metabolism , Insect Proteins/genetics , Mutation , Phylogeny , Receptors, Odorant/genetics , Smell
2.
G3 (Bethesda) ; 9(9): 3045-3055, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31340950

ABSTRACT

Cochliomyia hominivorax and Lucilia cuprina are major pests of livestock. Their larvae infest warm-blooded vertebrates and feed on host's tissues, resulting in severe industry losses. As they are serious pests, considerable effort has been made to develop genomic resources and functional tools aiming to improve their management and control. Here, we report a significant addition to the pool of genome manipulation tools through the establishment of efficient CRISPR/Cas9 protocols for the generation of directed and inheritable modifications in the genome of these flies. Site-directed mutations were introduced in the Chominivorax and Lcuprina yellow genes (ChY and LcY) producing lightly pigmented adults. High rates of somatic mosaicism were induced when embryos were injected with Cas9 ribonucleoprotein complexes (RNPs) pre-assembled with guide RNAs (sgRNAs) at high concentrations. Adult flies carrying disrupted yellow alleles lacked normal pigmentation (brown body phenotype) and efficiently transmitted the mutated alleles to the subsequent generation, allowing the rapid creation of homozygous strains for reverse genetics of candidate loci. We next used our established CRISPR protocol to disrupt the Chominivorax transformer gene (Chtra). Surviving females carrying mutations in the Chtra locus developed mosaic phenotypes of transformed ovipositors with characteristics of male genitalia while exhibiting abnormal reproductive tissues. The CRISPR protocol described here is a significant improvement on the existing toolkit of molecular methods in calliphorids. Our results also suggest that Cas9-based systems targeting Chtra and Lctra could be an effective means for controlling natural populations of these important pests.


Subject(s)
CRISPR-Cas Systems , Diptera/genetics , Insect Proteins/genetics , Animals , Animals, Genetically Modified , Diptera/embryology , Embryo, Nonmammalian , Female , Male , Mutation , Pest Control/methods , RNA, Guide, Kinetoplastida , Sex Determination Processes
3.
Acta Trop ; 141(Pt A): 60-72, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25265317

ABSTRACT

Species identification is an essential step in the progress and completion of work in several areas of biological knowledge, but it is not a simple process. Due to the close phylogenetic relationship of certain species, morphological characters are not always sufficiently distinguishable. As a result, it is necessary to combine several methods of analysis that contribute to a distinct categorization of taxa. This study aimed to raise diagnostic characters, both morphological and molecular, for the correct identification of species of the genus Chrysomya (Diptera: Calliphoridae) recorded in the New World, which has continuously generated discussion about its taxonomic position over the last century. A clear example of this situation was the first record of Chrysomya rufifacies in Brazilian territory in 2012. However, the morphological polymorphism and genetic variability of Chrysomya albiceps studied here show that both species (C. rufifacies and C. albiceps) share very similar character states, leading to misidentification and subsequent registration error of species present in our territory. This conclusion is demonstrated by the authors, based on a review of the material deposited in major scientific collections in Brazil and subsequent molecular and phylogenetic analysis of these samples. Additionally, we have proposed a new taxonomic key to separate the species of Chrysomya found on the American continent, taking into account a larger number of characters beyond those available in current literature.


Subject(s)
Classification , Diptera/classification , Insect Vectors/classification , Phenotype , Phylogeny , Polymorphism, Genetic , Animals , Brazil , Diptera/genetics , Insect Vectors/genetics
4.
J Mol Evol ; 64(5): 519-27, 2007 May.
Article in English | MEDLINE | ID: mdl-17460806

ABSTRACT

The structure and evolution of the mtDNA control region (CR) and its flanking genes in economically important dipterans from the family Muscidae (Brachycera: Calyptratae), Haematobia irritans, Musca domestica, Atherigona orientalis, and Stomoxys calcitrans are presented in this paper, along with the description of short noncoding intergenic regions possibly related to CR flanking sequences in Stomoxys calcitrans and Ophyra aenescens mtDNAs (ScIR and OaIR, respectively). S. calcitrans showed a large CR with an approximately 550-bp element tandemly repeated and a duplicated tRNA(Ile) gene. The characterization of H. irritans, M. domestica, A. orientalis, and S. calcitrans CR sequences led to the identification of seven conserved sequence blocks homologous to the elements previously described for Calliphoridae and Oestridae species (Brachycera: Calyptratae). Comparative analysis with Drosophila species (Brachycera: Acalyptratae) revealed four conserved regions. The putative functional roles of the conserved elements in the regulation of replication and transcription processes are addressed. The characterization of the structural organization of the mitochondrial genome CR demonstrates the plasticity of the mtDNA molecule in family Muscidae.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Locus Control Region/genetics , Muscidae/genetics , Nucleic Acid Conformation , Animals , Base Sequence , Conserved Sequence , Genome , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...