Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 81(6): 143, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627283

ABSTRACT

The cyanobacterium Synechococcus elongatus PCC 7942 holds significant potential as a biofactory for recombinant protein (RP) production due to its capacity to harness light energy and utilize CO2. This study aimed to enhance RP production by integration of native promoters and magnetic field application (MF) in S. elongatus PCC 7942. The psbA2 promoter, which responds to stress conditions, was chosen for the integration of the ZsGreen1 gene. Results indicated successful gene integration, affirming prior studies that showed no growth alterations in transgenic strains. Interestingly, exposure to 30 mT (MF30) demonstrated a increase in ZsGreen1 transcription under the psbA2 promoter, revealing the influence of MF on cyanobacterial photosynthetic machinery. This enhancement is likely attributed to stress-induced shifts in gene expression and enzyme activity. MF30 positively impacted photosystem II (PSII) without disrupting the electron transport chain, aligning with the "quantum-mechanical mechanism" theory. Notably, fluorescence levels and gene expression with application of 30 mT were significantly different from control conditions. This study showcases the efficacy of utilizing native promoters and MF for enhancing RP production in S. elongatus PCC 7942. Native promoters eliminate the need for costly exogenous inducers and potential cell stress. Moreover, the study expands the scope of optimizing RP production in photoautotrophic microorganisms, providing valuable insights for biotechnological applications.


Subject(s)
Synechococcus , Promoter Regions, Genetic , Synechococcus/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Article in English | MEDLINE | ID: mdl-37995828

ABSTRACT

In the field of shrimp aquaculture, the utilization of probiotics represents a promising avenue, due to the well-documented benefits conferred by these microorganisms. In the current study, a Bacillus subtilis strain, referred to as strain E, was isolated from the gastrointestinal tract of the shrimp Litopenaeus vannamei and subsequently identified via molecular methods and phylogeny. The probiotic potential of strain E was characterized, and its application as a feed shrimp additive was evaluated in a 45-day experiment. Several parameters were assessed, including zootechnical performance, muscle tissue proximate composition, hepatopancreas lipid concentration, and the expression of genes associated with digestion, amino acid metabolism, and antioxidant defense mechanisms in various shrimp tissues. Although no significant impact on zootechnical performance was observed, supplementation with strain E led to an increase in lipid concentration within both muscle and hepatopancreas tissues. Furthermore, a marked decrease in the expression of genes linked to digestion and amino acid metabolism was noted. These findings suggest that the addition of the B. subtilis strain E to shrimp feed may enhance nutrient absorption and modulate the expression of genes related to digestion and amino acid metabolism.


Subject(s)
Bacillus subtilis , Penaeidae , Animals , Bacillus subtilis/genetics , Penaeidae/genetics , Penaeidae/metabolism , Amino Acids/metabolism , Digestion , Lipids , Immunity, Innate
3.
Curr Microbiol ; 80(8): 242, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37300570

ABSTRACT

This study aimed to analyze the effect of magnetic field (MF) application on the metabolism of Synechococcus elongatus PCC 7942. Concentrations of biomass, carbohydrate, protein, lipid, and photosynthetic pigments (chlorophyll-a, C-phycocyanin, allophycocyanin and phycoerythrin) were determined. In cultures with MF application (30 mT for 24 h d-1), there were increases of 47.5% in total protein content, 87.4% in C-phycocyanin, and 332.8% in allophycocyanin contents, by comparison with the control. Allophycocyanin is the most affected pigment by MF application. Therefore, its biosynthetic route was investigated, and four genes related to its synthesis were found. However, the analysis of the gene expression showed no statistical differences from the control culture, which suggests that induction of such genes may occur soon after MF application with consequent stabilization over time. MF application may be a cost-effective alternative to increase production of compounds of commercial interest by cyanobacteria.


Subject(s)
Phycocyanin , Synechococcus , Phycocyanin/genetics , Phycocyanin/metabolism , Phycobiliproteins/metabolism , Phycobiliproteins/pharmacology , Synechococcus/genetics , Magnetic Fields
4.
Curr Microbiol ; 80(5): 136, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36914801

ABSTRACT

It is known that probiotic microorganisms play important roles in the composition of the intestinal microbiota. Also, probiotics can affect the paracellular and transcellular transport mechanisms performed by intestinal cells. The aim of this work was to evaluate the effect of the potential probiotic Bacillus subtilis KM0 on the profile of the gut microbiota and transcription of genes related to intestinal transport of zebrafish (Danio rerio). Zebrafish was exposed by immersion to B. subtilis KM0 for 48 h, and the intestines were collected for metataxonomic analysis and transcription of genes related to transcellular and paracellular transports. Although exposure to B. subtilis changed the intestinal microbiota profile of zebrafish, the diversity indices were not altered. A decrease in the number of genera of potentially pathogenic bacteria (Flavobacterium, Plesiomonas, and Pseudomonas) and downregulation in transcription of transcellular transport genes (cubn and amn) were observed. B. subtilis KM0 strain had the expected probiotic effect, by interfering with the proliferation of potentially pathogenic bacteria and decreasing the transcription of genes codifying for signals involved with a mechanism that can be used for invasion by pathogens. The present study demonstrated that, even with a short-term exposure, a bacterium with probiotic potential such as the KM0 strain of B. subtilis can modify the profile of the host's intestinal microbiota, with an impact on the regulation of intestinal genes related to mechanisms that can be used for invasion by pathogenic bacteria.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Animals , Bacillus subtilis/genetics , Zebrafish/microbiology , Intestines/microbiology
5.
Integr Biol (Camb) ; 14(8-12): 204-211, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36691944

ABSTRACT

Saponins are amphipathic glycosides with detergent properties present in vegetables. These compounds, when ingested, can cause difficulties in absorbing nutrients from food and even induce inflammatory processes in the intestine. There is already some evidence that saponins can be degraded by ß-glucosidases of the GH3 family. In the present study, we evaluated, through computational tools, the possibility of a ß-glucosidase (AMBGL17) obtained from a metagenomic analysis of the Amazonian soil, to catalytically interact with a saponin present in soybean. For this, the amino acid sequence of AMBGL17 was used in a phylogenetic analysis to estimate its origin and to determine its three-dimensional structure. The 3D structure of the enzyme was used in a molecular docking analysis to evaluate its interaction with soy saponin as a ligand. The results of the phylogenetic analysis showed that AMBGL17 comes from a microorganism of the phylum Chloroflexi, probably related to species of the order Aggregatinales. Molecular docking showed that soybean saponin can interact with the catalytic site of AMBGL17, with the amino acid GLY345 being important in this catalytic interaction, especially with a ß-1,2 glycosidic bond present in the carbohydrate portion of saponin. In conclusion, AMBGL17 is an enzyme with interesting biotechnological potential in terms of mitigating the anti-nutritional and pro-inflammatory effects of saponins present in vegetables used for human and animal food.


Subject(s)
Saponins , beta-Glucosidase , Animals , Humans , Molecular Docking Simulation , Phylogeny , Glycine max , Computers
6.
Biotechnol Biofuels ; 12: 174, 2019.
Article in English | MEDLINE | ID: mdl-31303894

ABSTRACT

BACKGROUND: The production of glucose from cellulose requires cellulases, which are obtained from decomposing microorganisms such as fungi and bacteria. Among the cellulases, ß-glucosidases convert cellobiose to glucose and have low concentration in commercial cocktails used for the production of second-generation (2G) ethanol. Genetic engineering can be used to produce recombinant ß-glucosidases, and cyanobacteria may be interesting bioreactors. These photosynthetic microorganisms can be cultured using CO2 emitted from the first-generation ethanol (1G) industry as a carbon source. In addition, vinasse, an effluent of 1G ethanol production, can be used as a source of nitrogen for cyanobacteria growth. Thus, photosynthetic bioreactors cannot only produce cellulases at a lower cost, but also reduce the environmental impact caused by residues of 1G ethanol production. RESULTS: In the present work, we produced a strain of Synechococcus elongatus capable of expressing high levels of a heterologous ß-glucosidase from a microorganism from the Amazonian soil. For this, the pET system was cloned into cyanobacteria genome. This system uses a dedicated T7 RNA polymerase for the expression of the gene of interest under the control of a nickel-inducible promoter. The results showed that the pET system functions efficiently in S. elongatus, once nickel induced T7 RNA polymerase expression which, in turn, induced expression of the gene of the microbial ß-glucosidase at high levels when compared with non-induced double transgenic strain. ß-glucosidase activity was more than sevenfold higher in the transformed cyanobacteria than in the wild-type strain. CONCLUSIONS: The T7 system promotes high expression levels of the cloned gene in S. elongatus, demonstrating that the arrangement in which an exclusive RNA polymerase is used for transcription of heterologous genes may contribute to high-level gene expression in cyanobacteria. This work was the first to demonstrate the use of cyanobacteria for the production of recombinant ß-glucosidases. This strategy could be an alternative to reduce the release of 1G ethanol by-products such as CO2 and vinasse, not only contributing to decrease the cost of ß-glucosidase production, but also mitigating the environmental impacts of ethanol industrial plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...