Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125711

ABSTRACT

Cystatin F (CstF) is a protease inhibitor of cysteine cathepsins, including those involved in activating the perforin/granzyme cytotoxic pathways. It is targeted at the endolysosomal pathway but can also be secreted to the extracellular milieu or endocytosed by bystander cells. CstF was shown to be significantly increased in tuberculous pleurisy, and during HIV coinfection, pleural fluids display high viral loads. In human macrophages, our previous results revealed a strong upregulation of CstF in phagocytes activated by interferon γ or after infection with Mycobacterium tuberculosis (Mtb). CstF manipulation using RNA silencing led to increased proteolytic activity of lysosomal cathepsins, improving Mtb intracellular killing. In the present work, we investigate the impact of CstF depletion in macrophages during the coinfection of Mtb-infected phagocytes with lymphocytes infected with HIV. The results indicate that decreasing the CstF released by phagocytes increases the major pro-granzyme convertase cathepsin C of cytotoxic immune cells from peripheral blood-derived lymphocytes. Consequently, an observed augmentation of the granzyme B cytolytic activity leads to a significant reduction in viral replication in HIV-infected CD4+ T-lymphocytes. Ultimately, this knowledge can be crucial for developing new therapeutic approaches to control both pathogens based on manipulating CstF.


Subject(s)
Cathepsin C , Coinfection , Granzymes , HIV Infections , Macrophages , Mycobacterium tuberculosis , Humans , Granzymes/metabolism , Granzymes/genetics , HIV Infections/metabolism , HIV Infections/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/microbiology , Macrophages/virology , Coinfection/microbiology , Cathepsin C/metabolism , Cathepsin C/genetics , Cystatins/metabolism , Cystatins/genetics , Tuberculosis/metabolism , Tuberculosis/immunology , Tuberculosis/microbiology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HIV-1/physiology , Biomarkers, Tumor
2.
Biomolecules ; 14(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062562

ABSTRACT

Tuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, Mycobacterium tuberculosis (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other. In these responses, the role of type I interferons is often associated with antiviral mechanisms, while for bacteria such as Mtb, their importance and clinical relevance as a suitable target for manipulation are more controversial. In this article, we review the recent knowledge on how these interferons play distinct roles and sometimes have opposite consequences depending on the stage of the pathogenesis. We highlight the dichotomy between the acute and chronic infections displayed by both infections and how type I interferons contribute to an initial control of each infection individually, while their chronic induction, particularly during HIV infection, might facilitate Mtb primo-infection and progression to disease. We expect that further findings and their systematization will allow the definition of windows of opportunity for interferon manipulation according to the stage of infection, contributing to pathogen clearance and control of immunopathology.


Subject(s)
HIV Infections , Interferon Type I , Mycobacterium tuberculosis , Tuberculosis , Humans , Interferon Type I/metabolism , Interferon Type I/immunology , Mycobacterium tuberculosis/immunology , HIV Infections/immunology , HIV Infections/microbiology , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/metabolism , Coinfection/immunology , Coinfection/microbiology , Animals
3.
Rev Med Virol ; 34(3): e2534, 2024 May.
Article in English | MEDLINE | ID: mdl-38588024

ABSTRACT

Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.


Subject(s)
AIDS Dementia Complex , Central Nervous System Diseases , HIV Infections , HIV-1 , Humans , HIV Infections/epidemiology , Neuroinflammatory Diseases , AIDS Dementia Complex/drug therapy , AIDS Dementia Complex/epidemiology , AIDS Dementia Complex/psychology , Central Nervous System Diseases/etiology , Central Nervous System
4.
Rev Med Virol ; 33(6): e2480, 2023 11.
Article in English | MEDLINE | ID: mdl-37698498

ABSTRACT

Despite the success of combined antiretroviral therapy in controlling viral load and reducing the risk of human immunodeficiency virus (HIV) transmission, an estimated 1.5 million new infections occurred worldwide in 2021. These new infections are mainly the result of sexual intercourse and thus involve cells present on the genital mucosa, such as dendritic cells (DCs), macrophages (Mø) and CD4+ T lymphocytes. Understanding the mechanisms by which HIV interacts with these cells and how HIV exploits these interactions to establish infection in a new human host is critical to the development of strategies to prevent and control HIV transmission. In this review, we explore how HIV has evolved to manipulate some of the physiological roles of these cells, thereby gaining access to strategic cellular niches that are critical for the spread and pathogenesis of HIV infection. The interaction of HIV with DCs, Mø and CD4+ T lymphocytes, and the role of the intercellular transfer of viral particles through the establishment of the infectious or virological synapses, but also through membrane protrusions such as filopodia and tunnelling nanotubes (TNTs), and cell fusion or cell engulfment processes are presented and discussed.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/physiology , CD4-Positive T-Lymphocytes , Macrophages , Dendritic Cells
5.
Microorganisms ; 11(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513033

ABSTRACT

Tuberculosis (TB) treatment relies primarily on 70-year-old drugs, and prophylaxis suffers from the lack of an effective vaccine. Among the 10 million people exhibiting disease symptoms yearly, 450,000 have multidrug or extensively drug-resistant (MDR or XDR) TB. A greater understanding of host and pathogen interactions will lead to new therapeutic interventions for TB eradication. One of the strategies will be to target the host for better immune bactericidal responses against the TB causative agent Mycobacterium tuberculosis (Mtb). Cathepsins are promising targets due to their manipulation of Mtb with consequences such as decreased proteolytic activity and improved pathogen survival in macrophages. We recently demonstrated that we could overcome this enzymatic blockade by manipulating protease inhibitors such as cystatins. Here, we investigate the role of cystatin F, an inhibitor that we showed previously to be strongly upregulated during Mtb infection. Our results indicate that the silencing of cystatin F using siRNA increase the proteolytic activity of cathepsins S, L, and B, significantly impacting pathogen intracellular killing in macrophages. Taken together, these indicate the targeting of cystatin F as a potential adjuvant therapy for TB, including MDR and XDR-TB.

6.
Biomolecules ; 13(6)2023 06 09.
Article in English | MEDLINE | ID: mdl-37371548

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis (TB), is one of the most successfully adapted human pathogens. Human-to-human transmission occurs at high rates through aerosols containing bacteria, but the pathogen evolved prior to the establishment of crowded populations. Mtb has developed a particular strategy to ensure persistence in the host until an opportunity for transmission arises. It has refined its lifestyle to obviate the need for virulence factors such as capsules, flagella, pili, or toxins to circumvent mucosal barriers. Instead, the pathogen uses host macrophages, where it establishes intracellular niches for its migration into the lung parenchyma and other tissues and for the induction of long-lived latency in granulomas. Finally, at the end of the infection cycle, Mtb induces necrotic cell death in macrophages to escape to the extracellular milieu and instructs a strong inflammatory response that is required for the progression from latency to disease and transmission. Common to all these events is ESAT-6, one of the major virulence factors secreted by the pathogen. This narrative review highlights the recent advances in understanding the role of ESAT-6 in hijacking macrophage function to establish successful infection and transmission and its use as a target for the development of diagnostic tools and vaccines.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Virulence Factors/metabolism , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Tuberculosis/microbiology
7.
Viruses ; 15(5)2023 04 22.
Article in English | MEDLINE | ID: mdl-37243118

ABSTRACT

Macrophages (Mø) and dendritic cells (DCs) are key players in human immunodeficiency virus (HIV) infection and pathogenesis. They are essential for the spread of HIV to CD4+ T lymphocytes (TCD4+) during acute infection. In addition, they constitute a persistently infected reservoir in which viral production is maintained for long periods of time during chronic infection. Defining how HIV interacts with these cells remains a critical area of research to elucidate the pathogenic mechanisms of acute spread and sustained chronic infection and transmission. To address this issue, we analyzed a panel of phenotypically distinct HIV-1 and HIV-2 primary isolates for the efficiency with which they are transferred from infected DCs or Mø to TCD4+. Our results show that infected Mø and DCs spread the virus to TCD4+ via cell-free viral particles in addition to other alternative pathways. We demonstrate that the production of infectious viral particles is induced by the co-culture of different cell populations, indicating that the contribution of cell signaling driven by cell-to-cell contact is a trigger for viral replication. The results obtained do not correlate with the phenotypic characteristics of the HIV isolates, namely their co-receptor usage, nor do we find significant differences between HIV-1 and HIV-2 in terms of cis- or trans-infection. The data presented here may help to further elucidate the cell-to-cell spread of HIV and its importance in HIV pathogenesis. Ultimately, this knowledge is critical for new therapeutic and vaccine approaches.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-2 , Persistent Infection , Macrophages , CD4-Positive T-Lymphocytes , Virus Replication , Dendritic Cells
8.
Microorganisms ; 11(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37110276

ABSTRACT

Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (Mtb) are pathogens responsible for millions of new infections each year; together, they cause high morbidity and mortality worldwide. In addition, late-stage HIV infection increases the risk of developing tuberculosis (TB) by a factor of 20 in latently infected people, and even patients with controlled HIV infection on antiretroviral therapy (ART) have a fourfold increased risk of developing TB. Conversely, Mtb infection exacerbates HIV pathogenesis and increases the rate of AIDS progression. In this review, we discuss this reciprocal amplification of HIV/Mtb coinfection and how they influence each other's pathogenesis. Elucidating the infectious cofactors that impact on pathogenesis may open doors for the design of new potential therapeutic strategies to control disease progression, especially in contexts where vaccines or the sterile clearance of pathogens are not effectively available.

9.
Antibiotics (Basel) ; 12(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37107091

ABSTRACT

The golden age of antibiotics for tuberculosis (TB) is marked by its success in the 1950s of the last century. However, TB is not under control, and the rise in antibiotic resistance worldwide is a major threat to global health care. Understanding the complex interactions between TB bacilli and their host can inform the rational design of better TB therapeutics, including vaccines, new antibiotics, and host-directed therapies. We recently demonstrated that the modulation of cystatin C in human macrophages via RNA silencing improved the anti-mycobacterial immune responses to Mycobacterium tuberculosis infection. Available in vitro transfection methods are not suitable for the clinical translation of host-cell RNA silencing. To overcome this limitation, we developed different RNA delivery systems (DSs) that target human macrophages. Human peripheral blood-derived macrophages and THP1 cells are difficult to transfect using available methods. In this work, a new potential nanomedicine based on chitosan (CS-DS) was efficiently developed to carry a siRNA-targeting cystatin C to the infected macrophage models. Consequently, an effective impact on the intracellular survival/replication of TB bacilli, including drug-resistant clinical strains, was observed. Altogether, these results suggest the potential use of CS-DS in adjunctive therapy for TB in combination or not with antibiotics.

10.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674655

ABSTRACT

Mycobacterium tuberculosis is able to establish a chronic colonization of lung macrophages in a controlled replication manner, giving rise to a so-called latent infection. Conversely, when intracellular bacteria undergo actively uncontrolled replication rates, they provide the switch for the active infection called tuberculosis to occur. Our group found that the pathogen is able to manipulate the activity of endolysosomal enzymes, cathepsins, directly at the level of gene expression or indirectly by regulating their natural inhibitors, cystatins. To provide evidence for the crucial role of cathepsin manipulation for the success of tuberculosis bacilli in their intracellular survival, we used liposomal delivery of saquinavir. This protease inhibitor was previously found to be able to increase cathepsin proteolytic activity, overcoming the pathogen induced blockade. In this study, we demonstrate that incorporation in liposomes was able to increase the efficiency of saquinavir internalization in macrophages, reducing cytotoxicity at higher concentrations. Consequently, our results show a significant impact on the intracellular killing not only to reference and clinical strains susceptible to current antibiotic therapy but also to multidrug- and extensively drug-resistant (XDR) Mtb strains. Altogether, this indicates the manipulation of cathepsins as a fine-tuning strategy used by the pathogen to survive and replicate in host cells.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Cathepsins/metabolism , Saquinavir/pharmacology , Saquinavir/metabolism , Liposomes/metabolism , Macrophages/metabolism , Tuberculosis/microbiology , Host-Pathogen Interactions/physiology
11.
Front Immunol ; 13: 955407, 2022.
Article in English | MEDLINE | ID: mdl-35990632

ABSTRACT

Cathepsins were first described, as endolysosomal proteolytic enzymes in reference to the organelles where they degrade the bulk of endogenous and exogenous substrates in a slightly acidic environment. These substrates include pathogens internalized via endocytosis and/or marked for destruction by autophagy. However, the role of cathepsins during infection far exceeds that of direct digestion of the pathogen. Cathepsins have been extensively investigated in the context of tumour associated immune cells and chronic inflammation. Several cathepsin-dependent immune responses develop in the endocytic pathway while others take place in the cytosol, the nucleus, or in the extracellular space. In this review we highlight the spatial localization of cathepsins and their implications in immune activation and resolution pathways during infection.


Subject(s)
Cathepsins , Lysosomes , Cathepsins/metabolism , Endocytosis , Endosomes/metabolism , Humans , Inflammation/metabolism , Lysosomes/metabolism
12.
Front Immunol ; 12: 742822, 2021.
Article in English | MEDLINE | ID: mdl-34867965

ABSTRACT

Tuberculosis owes its resurgence as a major global health threat mostly to the emergence of drug resistance and coinfection with HIV. The synergy between HIV and Mycobacterium tuberculosis (Mtb) modifies the host immune environment to enhance both viral and bacterial replication and spread. In the lung immune context, both pathogens infect macrophages, establishing favorable intracellular niches. Both manipulate the endocytic pathway in order to avoid destruction. Relevant players of the endocytic pathway to control pathogens include endolysosomal proteases, cathepsins, and their natural inhibitors, cystatins. Here, a mapping of the human macrophage transcriptome for type I and II cystatins during Mtb, HIV, or Mtb-HIV infection displayed different profiles of gene expression, revealing cystatin C as a potential target to control mycobacterial infection as well as HIV coinfection. We found that cystatin C silencing in macrophages significantly improves the intracellular killing of Mtb, which was concomitant with an increased general proteolytic activity of cathepsins. In addition, downmodulation of cystatin C led to an improved expression of the human leukocyte antigen (HLA) class II in macrophages and an increased CD4+ T-lymphocyte proliferation along with enhanced IFN-γ secretion. Overall, our results suggest that the targeting of cystatin C in human macrophages represents a promising approach to improve the control of mycobacterial infections including multidrug-resistant (MDR) TB.


Subject(s)
Coinfection/immunology , Cystatin C/immunology , HIV Infections/immunology , Macrophages/immunology , Tuberculosis/immunology , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Cystatin C/genetics , HIV-1 , Humans , Interferon-gamma/immunology , Macrophages/microbiology , Mycobacterium tuberculosis
13.
Front Immunol ; 12: 726984, 2021.
Article in English | MEDLINE | ID: mdl-34421929

ABSTRACT

The moment a very old bacterial pathogen met a young virus from the 80's defined the beginning of a tragic syndemic for humanity. Such is the case for the causative agent of tuberculosis and the human immunodeficiency virus (HIV). Syndemic is by definition a convergence of more than one disease resulting in magnification of their burden. Both pathogens work synergistically contributing to speed up the replication of each other. Mycobacterium tuberculosis (Mtb) and HIV infections are in the 21st century among the leaders of morbidity and mortality of humankind. There is an urgent need for development of new approaches for prevention, better diagnosis, and new therapies for both infections. Moreover, these approaches should consider Mtb and HIV as a co-infection, rather than just as separate problems, to prevent further aggravation of the HIV-TB syndemic. Both pathogens manipulate the host immune responses to establish chronic infections in intracellular niches of their host cells. This includes manipulation of host relevant antimicrobial proteases such as cathepsins or their endogenous inhibitors. Here we discuss recent understanding on how Mtb and HIV interact with cathepsins and their inhibitors in their multifactorial functions during the pathogenesis of both infections. Particularly we will address the role on pathogen transmission, during establishment of intracellular chronic niches and in granuloma clinical outcome and tuberculosis diagnosis. This area of research will open new avenues for the design of innovative therapies and diagnostic interventions so urgently needed to fight this threat to humanity.


Subject(s)
Cathepsins/immunology , HIV Infections/immunology , Tuberculosis/immunology , Animals , Cathepsins/antagonists & inhibitors , Granuloma/immunology , HIV Infections/diagnosis , HIV Infections/transmission , Host-Pathogen Interactions , Humans , Immunity, Mucosal , Mucous Membrane/immunology , Mucous Membrane/microbiology , Tuberculosis/diagnosis , Tuberculosis/transmission
14.
Virus Res ; 304: 198526, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34339772

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses innumerous challenges, like understanding what triggered the emergence of this new human virus, how this RNA virus is evolving or how the variability of viral genome may impact the primary structure of proteins that are targets for vaccine. We analyzed 19471 SARS-CoV-2 genomes available at the GISAID database from all over the world and 3335 genomes of other Coronoviridae family members available at GenBank, collecting SARS-CoV-2 high-quality genomes and distinct Coronoviridae family genomes. Additionally, we analyzed 199,984 spike glycoprotein sequences. Here, we identify a SARS-CoV-2 emerging cluster containing 13 closely related genomes isolated from bat and pangolin that showed evidence of recombination, which may have contributed to the emergence of SARS-CoV-2. The analyzed SARS-CoV-2 genomes presented 9632 single nucleotide variants (SNVs) corresponding to a variant density of 0.3 over the genome, and a clear geographic distribution. SNVs are unevenly distributed throughout the genome and hotspots for mutations were found for the spike gene and ORF 1ab. We describe a set of predicted spike protein epitopes whose variability is negligible. Additionally, all predicted epitopes for the structural E, M and N proteins are highly conserved. The amino acid changes present in the spike glycoprotein of variables of concern (VOCs) comprise between 3.4% and 20.7% of the predicted epitopes of this protein. These results favors the continuous efficacy of the available vaccines targeting the spike protein, and other structural proteins. Multiple epitopes vaccines should sustain vaccine efficacy since at least some of the epitopes present in variability regions of VOCs are conserved and thus recognizable by antibodies.


Subject(s)
COVID-19/virology , Pandemics , SARS-CoV-2 , Animals , COVID-19/epidemiology , Databases, Genetic , Genome, Viral , Humans , Mutation , Phylogeography , SARS-CoV-2/classification , SARS-CoV-2/genetics
15.
Front Immunol ; 12: 647728, 2021.
Article in English | MEDLINE | ID: mdl-33841429

ABSTRACT

Despite the available antibiotics, tuberculosis (TB) has made its return since the 90's of the last century as a global threat mostly due to co-infection with HIV, to the emergence of drug resistant strains and the lack of an effective vaccine. Host-directed strategies could be exploited to improve treatment efficacy, contain drug-resistant strains, improve immune responses and reduce disease severity. Macrophages in the lungs are often found infected with Mycobacterium tuberculosis (Mtb) and/or with HIV. The long-term survival of lung macrophages infected with Mtb or with HIV, together with their ability to produce viral particles, especially during TB, makes these niches major contributors to the pathogenicity of the infection. Among the available drugs to control HIV infection, protease inhibitors (PIs), acting at post-integrational stages of virus replication cycle, are the only drugs able to interfere with virus production and release from macrophages during chronic infection. For Mtb we recently found that the pathogen induces a general down-regulation of lysosomal proteases, helping bacteria to establish an intracellular niche in macrophages. Here we found that the PI saquinavir, contrary to ritonavir, is able to induce an increase of endolysosomal proteases activity especially of cathepsin S in Mtb infected macrophages and during co-infection with HIV. Our results indicate that saquinavir treatment of infected macrophages led not only to a significant intracellular killing of Mtb but also: (i) to an improved expression of the HLA class II antigen presentation machinery at the cell surface; (ii) to increased T-lymphocyte priming and proliferation; and (iii) to increased secretion of IFN-γ. All together the results indicate saquinavir as a potential host directed therapy for tuberculosis.


Subject(s)
Coinfection/immunology , Drug Repositioning/methods , HIV Infections/immunology , HIV Protease Inhibitors/pharmacology , HIV-1/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Mycobacterium tuberculosis/drug effects , Saquinavir/pharmacology , Tuberculosis/immunology , Blood Donors , CD4-Positive T-Lymphocytes/immunology , Cathepsins/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Coinfection/virology , HIV Infections/virology , HIV-1/isolation & purification , Humans , Interferon-gamma/metabolism , Macrophages, Alveolar/enzymology , Signal Transduction/drug effects , Tuberculosis/microbiology
16.
AIDS Res Hum Retroviruses ; 34(2): 218-221, 2018 02.
Article in English | MEDLINE | ID: mdl-29258330

ABSTRACT

The main goal of this work was to identify molecular signatures in envelope surface glycoprotein that may be correlated with coreceptor usage by different human immunodeficiency virus (HIV)-2 strains. From inspection of aligned HIV-2 sequences, we verified that V1/V2 region showed the highest degree of amino acid sequence heterogeneity, including polymorphisms in N-linked glycosylation sites, sequence, and length. Furthermore, we did not find any correlation between the net charge and specific amino acid positions in V3 region with any particular coreceptor usage pattern. In conclusion, we showed that for HIV-2, the genetic determinants for coreceptor usage are distinct from those of HIV-1. More specifically, we did not identify any molecular signature, based on discrete amino acid positions either in V1/V2 or in V3 regions, which could be assigned to the preferential usage of a specific coreceptor.


Subject(s)
Amino Acid Sequence/physiology , HIV Envelope Protein gp120/physiology , HIV-2/isolation & purification , Membrane Glycoproteins/metabolism , Receptors, HIV/physiology , Genetic Heterogeneity , Genetic Testing , Glycosylation , HIV Envelope Protein gp120/genetics , HIV-2/genetics , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism
17.
Viruses ; 8(6)2016 06 02.
Article in English | MEDLINE | ID: mdl-27271654

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.


Subject(s)
Gene Expression Regulation , Herpesviridae Infections/immunology , Herpesviridae Infections/pathology , Herpesviridae/immunology , Herpesviridae/pathogenicity , Host-Pathogen Interactions , MicroRNAs/metabolism , Humans
18.
Rev Med Virol ; 26(3): 197-215, 2016 May.
Article in English | MEDLINE | ID: mdl-27059433

ABSTRACT

MicroRNAs are small non-coding RNAs that modulate protein production by post-transcriptional gene regulation. They impose gene expression control by interfering with mRNA translation and stability in cell cytoplasm through a mechanism involving specific binding to mRNA based on base pair complementarity. Because of their intracellular replication cycle it is no surprise that viruses evolved in a way that allows them to use microRNAs to infect, replicate and persist in host cells. Several ways of interference between virus and host-cell microRNA machinery have been described. Most of the time, viruses drastically alter host-cell microRNA expression or synthesize their own microRNA to facilitate infection and pathogenesis. HIV and HCV are two prominent examples of this complex interplay revealing how fine-tuning of microRNA expression is crucial for controlling key host pathways that allow viral infection and replication, immune escape and persistence. In this review we delve into the mechanisms underlying cellular and viral-encoded microRNA functions in the context of HIV and HCV infections. We focus on which microRNAs are differently expressed and deregulated upon viral infection and how these alterations dictate the fate of virus and cell. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
HIV Infections/genetics , HIV Infections/virology , HIV-1/physiology , Hepacivirus/physiology , Hepatitis C/genetics , Hepatitis C/virology , Host-Pathogen Interactions , MicroRNAs/genetics , Animals , Disease Progression , Gene Expression Regulation , HIV Infections/metabolism , Hepatitis C/metabolism , Hepatitis C/pathology , Host-Pathogen Interactions/genetics , Humans , Liver/metabolism , Liver/virology , Nucleic Acid Conformation , Organ Specificity/genetics , RNA Interference , RNA, Viral/chemistry , RNA, Viral/genetics , Signal Transduction , Virus Replication/genetics
19.
AIDS Rev ; 18(1): 44-53, 2016.
Article in English | MEDLINE | ID: mdl-26936760

ABSTRACT

HIV-1 and HIV-2 are the causal agents of AIDS. While similar in many ways, a significant amount of data suggests that HIV-2 is less virulent than HIV-1. In fact, HIV-2 infection is characterized by a longer asymptomatic stage and lower transmission rate, and the majority of HIV-2-infected patients can be classified as long-term non-progressors or elite controllers. The mechanisms underlying the ability of human host to naturally control HIV-2 infection are far from being completely understood. The identification of the differences between HIV-1 and HIV-2 interactions with human host cells could provide important insights into several aspects of retroviral pathogenesis that remain elusive, with significant implications for HIV vaccine development and therapy. In this review, we delve into some of the differences that notably distinguish HIV-2 from HIV-1, highlighting possible consequences in the pathogenesis and natural history of both infections.


Subject(s)
HIV Infections/virology , HIV-1/pathogenicity , HIV-2/pathogenicity , Host-Pathogen Interactions , AIDS Vaccines , Asymptomatic Diseases , HIV Infections/immunology , HIV-1/immunology , HIV-2/immunology , Humans , Virulence
20.
Retrovirology ; 11: 99, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25421818

ABSTRACT

BACKGROUND: Human immunodeficiency virus 1 and 2 (HIV-1 and HIV-2) use cellular receptors in distinct ways. Besides a more promiscuous usage of coreceptors by HIV-2 and a more frequent detection of CD4-independent HIV-2 isolates, we have previously identified two HIV-2 isolates (HIV-2MIC97 and HIV-2MJC97) that do not use the two major HIV coreceptors: CCR5 and CXCR4. All these features suggest that in HIV-2 the Env glycoprotein subunits may have a different structural organization enabling distinct - although probably less efficient - interactions with cellular receptors. RESULTS: By infectivity assays using GHOST cell line expressing CD4 and CCR8 and blocking experiments using CCR8-specific ligand, I-309, we show that efficient replication of HIV-2MIC97 and HIV-2MJC97 requires the presence of CCR8 at plasma cell membrane. Additionally, we disclosed the determinants of chemokine receptor usage at the molecular level, and deciphered the amino acids involved in the usage of CCR8 (R8 phenotype) and in the switch from CCR8 to CCR5 or to CCR5/CXCR4 usage (R5 or R5X4 phenotype). The data obtained from site-directed mutagenesis clearly indicates that the main genetic determinants of coreceptor tropism are located within the V1/V2 region of Env surface glycoprotein of these two viruses. CONCLUSIONS: We conclude that a viral population able to use CCR8 and unable to infect CCR5 or CXCR4-positive cells, may exist in some HIV-2 infected individuals during an undefined time period, in the course of the asymptomatic stage of infection. This suggests that in vivo alternate molecules might contribute to HIV infection of natural target cells, at least under certain circumstances. Furthermore we provide direct and unequivocal evidence that the usage of CCR8 and the switch from R8 to R5 or R5X4 phenotype is determined by amino acids located in the base and tip of V1 and V2 loops of HIV-2 Env surface glycoprotein.


Subject(s)
Amino Acids/metabolism , HIV-2/physiology , Receptors, CCR5/metabolism , Receptors, CCR8/metabolism , Receptors, CXCR4/metabolism , Virus Attachment , env Gene Products, Human Immunodeficiency Virus/metabolism , Adult , Amino Acids/genetics , Cell Line , DNA Mutational Analysis , HIV-2/genetics , HIV-2/growth & development , Humans , Mutagenesis, Site-Directed , Receptors, HIV/metabolism , Virus Replication , env Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL