Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 257(Pt 1): 128650, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065455

ABSTRACT

The study found that the enzyme activity of human salivary α-amylase (α-AHS) was competitively inhibited by nanoplastic polystyrene (PS-NPs), with a half-inhibitory concentration (IC50) of 92 µg/mL, while the maximum reaction rate (Vmax) remained unchanged at 909 µg/mL•min. An increase in the concentration of PS-NPs led to a quenching of α-AHS fluorescence with a slight red shift, indicating a static mechanism. The binding constant (Ka) and quenching constant (Kq) were calculated to be 2.92 × 1011 M-1 and 1.078 × 1019 M-1• S-1 respectively, with a hill coefficient (n) close to one and an apparent binding equilibrium constant (KA) of 1.54 × 1011 M-1. Molecular docking results suggested that the interaction between α-AHS and PS-NPs involved π-anion interactions between the active site Asp197, Asp300 residues, and van der Waals force interactions affecting the Tyr, Trp, and other residues. Fourier transform infrared (FT-IR) and circular dichroism (CD) analyses revealed conformational changes in α-AHS, including a loss of secondary structure α-helix and ß-sheet. The study concludes that the interaction between α-AHS and PS-NPs leads to structural and functional changes in α-AHS, potentially impacting human health. This research provides a foundation for further toxicological analysis of MPs/NPs in the human digestive system.


Subject(s)
Microplastics , Salivary alpha-Amylases , Humans , Polystyrenes , Spectroscopy, Fourier Transform Infrared , Plastics , Molecular Docking Simulation , Circular Dichroism , Spectrometry, Fluorescence , Protein Binding , Thermodynamics
2.
Ecotoxicol Environ Saf ; 247: 114226, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36306622

ABSTRACT

The digestive enzyme of plant are generally α-amylase. They functions enzyme that breakdown starch into maltose and sugars. This happens in the endosperm of the seed. Due to pollutants, this process get happened one of emergent xenobiotics are micro and nano plastics. This study involves the interaction 100 nm size of polystyrene nano plastic (PSNPs) on α-amylase. The hyperchromism of α-amylase - PSNPs conjugate's revealed that ground-state complex in a microenvironment. Fluorescence quenching happened when the concentration of PSNPs was increased. The Stern Volmer plot revealed binding constant (Ka) was 1.904 × 1019 M-1. S-1 while the quenching constant (Kq) was 1.036 × 1011 M-1, the blue shift of the peak showed static quenching. The binding constant was KA = 4.2 × 1012, the number of binding site on PSNPs for α-amylase was n = 1.12. The synchronous result showed a gradual reduction in the intensity of Trp residues because when the α-amylase interacts with PSNPs short-range π-π interaction happens around the Trp163 residues. The enzyme activity of α-amylase by 44 % and its IC50 value was found to be 100 µg/mL. The enzyme kinetics (Vmax) analysis showed the type of inhibition with and without PSNPs Vmax 769 and Vmax 303 µg/mL/min, uncompetitive inhibition respectively. The effect of PSNPs on the enzymatic activity of α-amylase showed structural alterations of the protein. Therefore the in vitro and in silico studies were shown evidence of interaction between α-amylase and PSNPs leads to conformational structural changes in α-amylase.


Subject(s)
Polystyrenes , alpha-Amylases , Amylases , Microplastics , Starch/chemistry
4.
Sci Rep ; 10(1): 21005, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273505

ABSTRACT

Maintaining genomic stability is inevitable for organism survival and it is challenged by mutagenic agents, which include ultraviolet (UV) radiation. Whenever DNA damage occurs, it is sensed by DNA-repairing proteins and thereby performing the DNA-repair mechanism. Specifically, in response to DNA damage, H2AX is a key protein involved in initiating the DNA-repair processes. In this present study, we investigate the effect of UV-C on earthworm, Perionyx excavatus and analyzed the DNA-damage response. Briefly, we expose the worms to different doses of UV-C and find that worms are highly sensitive to UV-C. As a primary response, earthworms produce coelomic fluid followed by autotomy. However, tissue inflammation followed by death is observed when we expose worm to increased doses of UV-C. In particular, UV-C promotes damages in skin layers and on the contrary, it mediates the chloragogen and epithelial outgrowth in intestinal tissues. Furthermore, UV-C promotes DNA damages followed by upregulation of H2AX on dose-dependent manner. Our finding confirms DNA damage caused by UV-C is directly proportional to the expression of H2AX. In short, we conclude that H2AX is present in the invertebrate earthworm, which plays an evolutionarily conserved role in DNA damage event as like that in higher animals.


Subject(s)
DNA Damage , Helminth Proteins/metabolism , Histones/metabolism , Oligochaeta/radiation effects , Ultraviolet Rays , Animals , Helminth Proteins/genetics , Histones/genetics , Oligochaeta/genetics , Up-Regulation
5.
Biotechnol Prog ; 35(4): e2817, 2019 07.
Article in English | MEDLINE | ID: mdl-30972965

ABSTRACT

Fetal Bovine Serum (FBS) is used as a major supplement in culturing animal cells under in vitro conditions. Due to ethical concern, high cost, biosafety, and geographical as well as batchwise result variations, it is important to reduce or replace the use of FBS in animal cell culture. The major objective of this work is to evaluate the feasibility of heat-inactivated coelomic fluid (HI-CF) of the earthworm, Perionyx excavatus as a possible alternative for FBS in animal cell culture experiments. The coelomic fluid (CF) was extruded from the earthworm using electric shock method and used for the experiments. Electric shock method is a simple non-invasive technique, which has no harmful effect on earthworms. Mouse primary fibroblast and HeLa cell lines were used in this study. Among HI-CF, autoclaved CF and crude CF, the supplement of medium with HI-CF shows positive results. The processed HI-CF (90°C for 5 min) at 10% supplement in cell culture medium promote maximum cell growth but cells need the initial support of FBS for the attachment to the culture flask. Microscopic observation and immunofluorescence assay with actin and lamin A confirm that the cellular and molecular morphology of the cells is maintained intact. The HI-CF of earthworm, P. excavatus has shown better cellular viability when compared with FBS and making it possible as an alternative supplement to minimize the use of FBS.


Subject(s)
Body Fluids/chemistry , Carnitine/chemistry , Culture Media/chemistry , Hot Temperature , Animals , Cattle , Cell Proliferation , Cell Survival , HeLa Cells , Humans , Mice , Oligochaeta , Tumor Cells, Cultured
6.
Cells Tissues Organs ; 208(3-4): 134-141, 2019.
Article in English | MEDLINE | ID: mdl-32417843

ABSTRACT

Regeneration is a complex mechanism to restore lost or damaged body parts. In earthworms, regeneration capability varies among different species, and it is important to explore the mechanism behind the regeneration process. Interestingly, regeneration in earthworms is either dependent or independent of clitellum segments. In the present study, juvenile earthworms (Eudrilus eugeniae) were amputated at 3 different sites, namely the head, clitellum, and tail segments (at segments 10, 15, and 30, respectively), and their regeneration ability was documented using a foldscope. The amputated segments having the intact clitellum were able to heal the wounds and form the regenerative blastema. The smaller portions of the amputated segments (segments 1-10 and 1-15) without intact clitellum were unable to heal the wound, and death occurs within 12-24 h. The larger portions of the amputated segments (segments 15 and 30 to anus) without intact clitellum were able to heal the wound but lacked the regeneration capability. In control worms, alkaline phosphatase (ALP) signals were observed at the anterior tip, clitellum, and gut epithelium tissues, whereas, upon amputation, the enriched signals from the clitellum diminished, but profound signals were observed at the amputation site and regenerative blastema. Interestingly, on days 3 and 4, blastemal tips lacked ALP signals due to initiation of the differentiation process in the regeneration blastema. In summary, using a foldscope microscope, the role of the clitellum in the regeneration mechanism was indicated by ALP activity.

SELECTION OF CITATIONS
SEARCH DETAIL