Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(36): 8199-8204, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37672355

ABSTRACT

The structure of the minimum unit of the radical cationic water clusters, the (H2O)2+ dimer, has attracted much attention because of its importance for the radiation chemistry of water. Previous spectroscopic studies indicated that the dimers have a proton-transferred structure (H3O+·OH), though the alternate metastable hemibonded structure (H2O·OH2)+ was also predicted based on theoretical calculations. Here, we produce (H2O)2+ dimers in superfluid helium nanodroplets and study their infrared spectra in the range of OH stretching vibrations. The observed spectra indicate the coexistence of the two structures in the droplets, supported by density functional theory calculations. This is the first spectroscopic identification of the hemibonded isomer of water radical cation dimers. The observation of the higher-energy isomer reveals efficient kinetic trapping for metastable ionic clusters due to the rapid cooling in helium droplets.

2.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37695112

ABSTRACT

Here, we describe our pulsed helium droplet apparatus for spectroscopy of molecular ions. Our approach involves the doping of the droplets of about 10 nm in diameter with precursor molecules, such as ethylene, followed by electron impact ionization. Droplets containing ions are irradiated by the pulsed infrared laser beam. Vibrational excitation of the embedded cations leads to the evaporation of the helium atoms in the droplets and the release of the free ions, which are detected by the quadrupole mass spectrometer. In this work, we upgraded the experimental setup by introducing an octupole RF collision cell downstream from the electron impact ionizer. The implementation of the RF ion guide increases the transmission efficiency of the ions. Filling the collision cell with additional He gas leads to a decrease in the droplet size, enhancing sensitivity to the laser excitation. We show that the spectroscopic signal depends linearly on the laser pulse energy, and the number of ions generated per laser pulse is about 100 times greater than in our previous experiments. These improvements facilitate faster and more reproducible measurements of the spectra, yielding a handy laboratory technique for the spectroscopic study of diverse molecular ions and ionic clusters at low temperature (0.4 K) in He droplets.

SELECTION OF CITATIONS
SEARCH DETAIL
...