Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(10): 4487-4499, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38422483

ABSTRACT

Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.


Subject(s)
Endocrine Disruptors , Fluorocarbons , Humans , Receptors, Cytoplasmic and Nuclear , Endocrine Disruptors/chemistry , Endocrine Disruptors/metabolism
3.
Environ Res ; 217: 114832, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36403651

ABSTRACT

Due to their persistence and toxicity, perfluoroalkyl and polyfluoroalkyl substances (PFASs) constitute significant hazards to human health and the environment. Their effects include immune suppression, altered hormone levels, and osteoporosis. Recently, the most studied PFAS, perfluorooctanoic acid (PFOA), was shown to competitively binding to the Vitamin D receptor (VDR). VDR plays a crucial role in regulating genes involved in maintaining immune, endocrine, and calcium homeostasis, suggesting it may be a target for at least some of the health effects of PFAS. Hence, this study examined the potential binding of 5206 PFASs to VDR using molecular docking, molecular dynamics, and free energy binding calculations. We identified 14 PFAS that are predicted to interact strongly with VDR, similar to the natural ligands. We further investigated the interactions of VDR with 256 PFASs of established commercial importance. Eighty-three (32%) of these 256 commercially important PFAS were predicted to be stronger binders to VDR than PFOA. At least 16 PFASs of regulatory importance, because they have been identified in water supplies and human blood samples, were also more potent binders to VDR than PFOA. Further, PFASs are usually found together in contaminated drinking water and human blood samples, which raises the concern that multiple PFASs may act together as a mixture on VDR function, potentially producing harmful effects on the immune, endocrine, and bone homeostasis.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Humans , Molecular Docking Simulation , Receptors, Calcitriol , Fluorocarbons/toxicity , Caprylates/toxicity
4.
Int J Mol Sci ; 22(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803858

ABSTRACT

Beta glucans are known to have immunomodulatory effects that mediated by a variety of mechanisms. In this article, we describe experiments and simulations suggesting that beta-1,3 glucans may promote activation of T cells by a previously unknown mechanism. First, we find that treatment of a T lymphoblast cell line with beta-1,3 oligoglucan significantly increases mRNA levels of T cell activation-associated cytokines, especially in the presence of the agonistic anti-CD3 antibody. This immunostimulatory activity was observed in the absence of dectin-1, a known receptor for beta-1,3 glucans. To clarify the molecular mechanism underlying this activity, we performed a series of molecular dynamics simulations and free-energy calculations to explore the interaction of beta-1,3 oligoglucans with potential immune receptors. While the simulations reveal little association between beta-1,3 oligoglucan and the immune receptor CD3, we find that beta-1,3 oligoglucans bind to CD28 near the region identified as the binding site for its natural ligands CD80 and CD86. Using a rigorous absolute binding free-energy technique, we calculate a dissociation constant in the low millimolar range for binding of 8-mer beta-1,3 oligoglucan to this site on CD28. The simulations show this binding to be specific, as no such association is computed for alpha-1,4 oligoglucan. This study suggests that beta-1,3 glucans bind to CD28 and may stimulate T cell activation collaboratively with T cell receptor activation, thereby stimulating immune function.


Subject(s)
CD28 Antigens/metabolism , Lymphocyte Activation/immunology , Receptors, Immunologic/metabolism , T-Lymphocytes/immunology , beta-Glucans/metabolism , CD28 Antigens/chemistry , Cytokines/metabolism , Humans , Jurkat Cells , Models, Molecular , Protein Binding , Receptors, Immunologic/chemistry , Thermodynamics , beta-Glucans/chemistry
5.
Environ Res ; 190: 109920, 2020 11.
Article in English | MEDLINE | ID: mdl-32795691

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew's correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


Subject(s)
Endocrine Disruptors , Fluorocarbons , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Fluorocarbons/toxicity , Machine Learning , Mass Screening , Molecular Docking Simulation , Receptors, Androgen
6.
Chemosphere ; 257: 127178, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32505947

ABSTRACT

Hydraulic fracturing (HF) technology is increasingly utilized for oil and gas extraction operations. The widespread use of HF has led to concerns of negative impacts on both the environment and human health. Indeed, the potential endocrine disrupting impacts of HF chemicals is one such knowledge gap. Herein, we used structure-based molecular docking to assess the binding affinities of 60 HF chemicals to the human androgen receptor (AR). Five HF chemicals had relatively high predicted AR binding affinity, suggesting the potential for endocrine disruption. We next assessed androgenic and antiandrogenic activities of these chemicals in vitro. Of the five candidate AR ligands, only Genapol®X-100 significantly modified AR transactivation. To better understand the structural effect of Genapol®X-100 on the potency of AR inhibition, we compared the antiandrogenic activity of Genapol®X-100 with that of its structurally similar chemical, Genapol®X-080. Interestingly, both Genapol®X-100 and Genapol®X-080 elicited an antagonistic effect at AR with 20% relative inhibitory concentrations of 0.43 and 0.89 µM, respectively. Furthermore, we investigated the mechanism of AR inhibition of these two chemicals in vitro, and found that both Genapol®X-100 and Genapol®X-080 inhibited AR through a noncompetitive mechanism. The effect of these two chemicals on the expression of AR responsive genes, e.g. PSA, KLK2, and AR, was also investigated. Genapol®X-100 and Genapol®X-080 altered the expression of these genes. Our findings heighten awareness of endocrine disruption by HF chemicals and provide evidence that noncompetitive antiandrogenic Genapol®X-100 could cause adverse endocrine health effects.


Subject(s)
Endocrine Disruptors/toxicity , Androgen Antagonists/chemistry , Androgen Receptor Antagonists/pharmacology , Androgens , Endocrine Disruptors/chemistry , Humans , Hydraulic Fracking , Molecular Docking Simulation , Receptors, Androgen/metabolism
7.
J Phys Chem B ; 123(36): 7657-7666, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31431014

ABSTRACT

Androgen receptor (AR) is a steroid hormone nuclear receptor which upon binding its endogenous androgenic ligands (agonists), testosterone and dihydrotestosterone (DHT), alters gene transcription, producing a diverse range of biological effects. Antiandrogens, such as the pharmaceuticals bicalutamide and hydroxyflutamide, act as agonists in the absence of androgens and as antagonists in their presence or in high concentration. The atomic level mechanism of action by agonists and antagonists of AR is less well characterized. Therefore, in this study, multiple 1 µs molecular dynamics (MD), docking simulations, and perturbation-response analyses were performed to more fully explore the nature of interaction between agonist or antagonist and AR and the conformational changes induced in the AR upon interaction with different ligands. We characterized the mechanism of the ligand entry/exit and found that helix-12 and nearby structural motifs respond dynamically in that process. Modeling showed that the agonist and antagonist/agonist form a hydrogen bond with Thr877/Asn705 and that this interaction is absent for antagonists. Agonist binding to AR increases the mobility of residues at allosteric sites and coactivator binding sites, while antagonist binding decreases mobility at these important sites. A new site was also identified as a potential surface for allosteric binding. These results shed light on the effect of agonists and antagonists on the structure and dynamics of AR.


Subject(s)
Androgen Receptor Antagonists/chemistry , Androgens/chemistry , Molecular Dynamics Simulation , Androgen Receptor Antagonists/pharmacology , Androgens/pharmacology , Anilides/chemistry , Anilides/pharmacology , Binding Sites/drug effects , Dihydrotestosterone/chemistry , Dihydrotestosterone/pharmacology , Flutamide/analogs & derivatives , Flutamide/chemistry , Flutamide/pharmacology , Humans , Nitriles/chemistry , Nitriles/pharmacology , Receptors, Androgen/metabolism , Testosterone/chemistry , Testosterone/pharmacology , Tosyl Compounds/chemistry , Tosyl Compounds/pharmacology
8.
Toxins (Basel) ; 10(10)2018 09 28.
Article in English | MEDLINE | ID: mdl-30274214

ABSTRACT

Small molecule inhibitors of snake venom metalloproteinases (SVMPs) could provide a means to rapidly halt the progression of local tissue damage following viperid snake envenomations. In this study, we examine the ability of candidate compounds based on a pentacyclic triterpene skeleton to inhibit SVMPs. We leverage molecular dynamics simulations to estimate the free energies of the candidate compounds for binding to BaP1, a P-I type SVMP, and compare these results with experimental assays of proteolytic activity inhibition in a homologous enzyme (Batx-I). Both simulation and experiment suggest that betulinic acid is the most active candidate, with the simulations predicting a standard binding free energy of Δ G ∘ = - 11.0 ± 1.4 kcal/mol. The simulations also reveal the atomic interactions that underlie binding between the triterpenic acids and BaP1, most notably the electrostatic interaction between carboxylate groups of the compounds and the zinc cofactor of BaP1. Together, our simulations and experiments suggest that occlusion of the S1 ' subsite is essential for inhibition of proteolytic activity. While all active compounds make hydrophobic contacts in the S1 ' site, ß -boswellic acid, with its distinct carboxylate position, does not occlude the S1 ' site in simulation and exhibits negligible activity in experiment.


Subject(s)
Crotalid Venoms/chemistry , Metalloproteases/chemistry , Triterpenes/chemistry , Carboxylic Acids/chemistry , Molecular Dynamics Simulation , Proteolysis
9.
Phys Chem Chem Phys ; 17(45): 30307-17, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26508176

ABSTRACT

The complexation of small interfering RNA (siRNA) with positively charged gold nanoclusters has been studied in the present investigation with the help of classical molecular dynamics and steered molecular dynamics simulations accompanied by free energy calculations. The results show that gold nanoclusters form a stable complex with siRNA. The wrapping of siRNA around the gold nanocluster depends on the size and charge on the surface of the gold cluster. The binding pattern of the gold nanocluster with siRNA is also influenced by the presence of another cluster. The interaction between the positively charged amines in the gold nanocluster and the negatively charged phosphate group in the siRNA is responsible for the formation of complexes. The binding free energy value increases with the size of the gold cluster and the number of positive charges present on the surface of the gold nanocluster. The results reveal that the binding energy of small gold nanoclusters increases in the presence of another gold nanocluster while the binding of large gold nanoclusters decreases due to the introduction of another gold nanocluster. Overall, the findings have clearly demonstrated the effect of size and charge of gold nanoclusters on their interaction pattern with siRNA.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Dynamics Simulation , RNA, Small Interfering/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...