Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794498

ABSTRACT

Quantitative converse piezoelectric coefficient (d33) mapping of polymer ultrafine fibers of poly(acrylonitrile) (PAN), as well as of poly(vinylidene fluoride) (PVDF) as a reference material, obtained by rotating electrospinning, was carried out by piezoresponse force microscopy in the constant-excitation frequency-modulation mode (CE-FM-PFM). PFM mapping of single fibers reveals their piezoelectric activity and provides information on its distribution along the fiber length. Uniform behavior is typically observed on a length scale of a few micrometers. In some cases, variations with sinusoidal dependence along the fiber are reported, compatibly with a possible twisting around the fiber axis. The observed features of the piezoelectric yield have motivated numerical simulations of the surface displacement in a piezoelectric ultrafine fiber concerned by the electric field generated by biasing of the PFM probe. Uniform alignment of the piezoelectric axis along the fiber would comply with the uniform but strongly variable values observed, and sinusoidal variations were occasionally found on the fibers laying on the conductive substrate. Furthermore, in the latter case, numerical simulations show that the piezoelectric tensor's shear terms should be carefully considered in estimations since they may provide a remarkably different contribution to the overall deformation profile.

2.
Molecules ; 29(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276612

ABSTRACT

Bacteriotherapy is emerging as a strategic and effective approach to treat infections by providing putatively harmless bacteria (i.e., probiotics) as antagonists to pathogens. Proper delivery of probiotics or their metabolites (i.e., post-biotics) can facilitate their availing of biomaterial encapsulation via innovative manufacturing technologies. This review paper aims to provide the most recent biomaterial-assisted strategies proposed to treat infections or dysbiosis using bacteriotherapy. We revised the encapsulation processes across multiscale biomaterial approaches, which could be ideal for targeting different tissues and suit diverse therapeutic opportunities. Hydrogels, and specifically polysaccharides, are the focus of this review, as they have been reported to better sustain the vitality of the live cells incorporated. Specifically, the approaches used for fabricating hydrogel-based devices with increasing dimensionality (D)-namely, 0D (i.e., particles), 1D (i.e., fibers), 2D (i.e., fiber meshes), and 3D (i.e., scaffolds)-endowed with probiotics, were detailed by describing their advantages and challenges, along with a future overlook in the field. Electrospinning, electrospray, and 3D bioprinting were investigated as new biofabrication methods for probiotic encapsulation within multidimensional matrices. Finally, examples of biomaterial-based systems for cell and possibly post-biotic release were reported.


Subject(s)
Bioprinting , Tissue Engineering , Tissue Engineering/methods , Bioprinting/methods , Biocompatible Materials , Printing, Three-Dimensional , Technology , Hydrogels/therapeutic use , Tissue Scaffolds
3.
Tissue Eng Part A ; 30(7-8): 340-356, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37962275

ABSTRACT

In this study, we develop a bio-based and bioactive nanofibrous patch based on bacterial cellulose (BC) and chitin nanofibrils (CNs) using an ionic liquid as a solvent for BC, aimed at tympanic membrane (TM) repair. Electrospun BC nanofiber meshes were produced via electrospinning, and surface-modified with CNs using electrospray. The rheology of the BC/ionic liquid system was investigated. The obtained CN/BC meshes underwent comprehensive morphological, physicochemical, and mechanical characterization. Cytotoxicity tests were conducted using L929 mouse fibroblasts, revealing a cell viability of 97.8%. In vivo tests on rabbit skin demonstrated that the patches were nonirritating. Furthermore, the CN/BC fiber meshes were tested in vitro using human dermal keratinocytes (HaCaT cells) and human umbilical vein endothelial cells as model cells for TM perforation healing. Both cell types demonstrated successful growth on these scaffolds. The presence of CNs resulted in improved indirect antimicrobial activity of the electrospun fiber meshes. HaCaT cells exhibited an upregulated mRNA expression at 6 and 24 h of key proinflammatory cytokines crucial for the wound healing process, indicating the potential benefits of CNs in the healing response. Overall, this study presents a natural and eco-sustainable fiber mesh with great promise for applications in TM repair, leveraging the synergistic effects of BC and CNs to possibly enhance tissue regeneration and healing. Impact statement Repair of tympanic membrane perforations following chronic otitis media is a main clinical issue in otologic surgery, where the underlying infection obstacles self-healing. To address this challenge, our study proposes a bio-based patch made of nanoscale carbohydrate materials (i.e., bacterial cellulose electrospun fibers and chitin nanofibrils) processed via green solvents. The scaffold is nonirritating in vivo, and cytocompatible with fibroblasts, endothelial cells, and keratinocytes. In epithelial cells, it stimulates the expression of the antimicrobial peptide human beta defensin 2, with a pathway of cytokine expression compatible with the wound healing process. Therefore, it could be applied with unsolved infective pathology.


Subject(s)
Ionic Liquids , Nanofibers , Tympanic Membrane Perforation , Mice , Animals , Humans , Rabbits , Cellulose/pharmacology , Tympanic Membrane , Chitin/pharmacology , Endothelial Cells , Nanofibers/chemistry , Tissue Scaffolds/chemistry
4.
Int J Biol Macromol ; 253(Pt 8): 127118, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37802434

ABSTRACT

Superabsorbent hydrogels (SAHs) are essential in various applications, including hygienic products like adult incontinence pads. However, synthetic-based super absorbent polymers (SAPs) dominate the market despite being non-biodegradable. Alternatively, bio-based hydrogels, such as sodium alginate (SA)-based hydrogels, offer biodegradable alternatives. In this study, we aimed to enhance the practical applied properties of SA-based hydrogels by grafting SA with acrylic acid (AA) and incorporating cellulose nanocrystals (CNCs). Specifically, we investigated the potential of interpenetrating network (IPN) and semi-interpenetrating network (S-IPN) hydrogels as absorbent materials in adult incontinence pads. The fabricated SAHs were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). They were also evaluated for absorption and rheological properties. The results showed that in IPN/SAHs, the addition of CNCs decreased pore sizes, while in S-IPN/SAHs, CNC incorporation increased pore sizes. The S-IPN/SAHs exhibited a significantly higher free swelling capacity (FSC) with CNCs loading, reaching 142.29 g/g in 0.9 % NaCl solution and 817.4 g/g in distilled water. On the other hand, IPN/SAHs showed a higher storage modulus and lower loss modulus compared to S-IPN/SAHs. Notably, the superior samples from this study showed a 33 % reduction in SAP consumption compared to commercial SAPs, making them more cost-effective for adult incontinence pad manufacturers. Overall, our research demonstrates the potential of interpenetrating and semi-interpenetrating network superabsorbent hydrogels as high-performance absorbent materials. The results offer improved absorbency and cost savings for producers of adult incontinence pads, and bio-based hydrogels like SA-based hydrogels are promising biodegradable alternatives to synthetic-based SAPs.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Alginates/chemistry , Incontinence Pads , Hydrogels/chemistry , Spectroscopy, Fourier Transform Infrared , Polymers/chemistry
5.
Polymers (Basel) ; 15(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37688120

ABSTRACT

The delivery of drugs through the skin barrier at a predetermined rate is the aim of transdermal drug delivery systems (TDDSs). However, so far, TDDS has not fully attained its potential as an alternative to hypodermic injections and oral delivery. In this study, we presented a proof of concept of a dual drug-loaded patch made of nanoparticles (NPs) and ultrafine fibers fabricated by using one equipment, i.e., the electrospinning apparatus. Such NP/fiber systems can be useful to release drugs locally through the skin and the tympanic membrane. Briefly, dexamethasone (DEX)-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) fiber meshes were decorated with rhodamine (RHO)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs, with RHO representing as a second drug model. By properly tuning the working parameters of electrospinning, DEX-loaded PHBHV fibers (i.e., by electrospinning mode) and RHO-loaded PLGA NPs (i.e., by electrospray mode) were successfully prepared and straightforwardly assembled to form a TDDS patch, which was characterized via Fourier transform infrared spectroscopy and dynamometry. The patch was then tested in vitro using human dermal fibroblasts (HDFs). The incorporation of DEX significantly reduced the fiber mesh stiffness. In vitro tests showed that HDFs were viable for 8 days in contact with drug-loaded samples, and significant signs of cytotoxicity were not highlighted. Finally, thanks to a beaded structure of the fibers, a controlled release of DEX from the electrospun patch was obtained over 4 weeks, which may accomplish the therapeutic objective of a local, sustained and prolonged anti-inflammatory action of a TDDS, as is requested in chronic inflammatory conditions, and other pathological conditions, such as in sudden sensorineural hearing loss treatment.

6.
Int J Biol Macromol ; 246: 125721, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37419257

ABSTRACT

Today, one of the world's critical environmental issues is air pollution, which is the most important parameter threatening human health and the environment. Synthetic polymers are widely used in industrial air filter production; however, they are incompatible with the environment due to their secondary pollution. Using renewable materials to manufacture air filters is not only environmentally friendly but also essential. Recently, a new generation of biopolymers called cellulose nanofiber (CNF)-based hydrogels have been proposed, with three dimensional (3D) nanofiber networks and unique physical and mechanical properties. CNFs have become a hot research topic for application as air filter materials because they can compete with synthetic nanofibers due to their advantages, such as abundant, renewable, nontoxic, high specific surface area, high reactivity, flexibility, low cost, low density, and network structure formation. The main focus of the current review is the recent progress in the preparation and employment of nanocellulose materials, especially CNF-based hydrogels, to absorb PM and CO2. This study summarizes the preparation methods, modification strategies, fabrications, and further applications of CNF-based aerogels as air filters. Lastly, challenges in the fabrication of CNFs, and trends for future developments are presented.


Subject(s)
Air Filters , Nanofibers , Humans , Hydrogels/chemistry , Nanofibers/chemistry , Cellulose/chemistry , Polymers
7.
Int J Mol Sci ; 24(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37298394

ABSTRACT

Three-dimensional scaffold-based culture has been increasingly gaining influence in oncology as a therapeutic strategy for tumors with a high relapse percentage. This study aims to evaluate electrospun poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) scaffolds to create a 3D model of colorectal adenocarcinoma. Specifically, the physico-mechanical and morphological properties of PCL and PLA electrospun fiber meshes collected at different drum velocities, i.e., 500 rpm, 1000 rpm and 2500 rpm, were assessed. Fiber size, mesh porosity, pore size distribution, water contact angle and tensile mechanical properties were investigated. Caco-2 cells were cultured on the produced PCL and PLA scaffolds for 7 days, demonstrating good cell viability and metabolic activity in all the scaffolds. A cross-analysis of the cell-scaffold interactions with morphological, mechanical and surface characterizations of the different electrospun fiber meshes was carried out, showing an opposite trend of cell metabolic activity in PLA and PCL scaffolds regardless of the fiber alignment, which increased in PLA and decreased in PCL. The best samples for Caco-2 cell culture were PCL500 (randomly oriented fibers) and PLA2500 (aligned fibers). Caco-2 cells had the highest metabolic activity in these scaffolds, with Young's moduli in the range of 8.6-21.9 MPa. PCL500 showed Young's modulus and strain at break close to those of the large intestine. Advancements in 3D in vitro models of colorectal adenocarcinoma could move forward the development of therapies for this cancer.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Humans , Tissue Engineering/methods , Caco-2 Cells , Neoplasm Recurrence, Local , Polyesters , Tissue Scaffolds
8.
Carbohydr Polym ; 310: 120732, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36925264

ABSTRACT

The tympanic membrane (TM), is a thin tissue lying at the intersection of the outer and the middle ear. TM perforations caused by traumas and infections often result in a conductive hearing loss. Tissue engineering has emerged as a promising approach for reconstructing the damaged TM by replicating the native material characteristics. In this regard, chitin nanofibrils (CN), a polysaccharide-derived nanomaterial, is known to exhibit excellent biocompatibility, immunomodulation and antimicrobial activity, thereby imparting essential qualities for an optimal TM regeneration. This work investigates the application of CN as a nanofiller for poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer to manufacture clinically suitable TM scaffolds using electrospinning and fused deposition modelling. The inclusion of CN within the PEOT/PBT matrix showed a three-fold reduction in the corresponding electrospun fiber diameters and demonstrated a significant improvement in the mechanical properties required for TM repair. Furthermore, in vitro biodegradation assay highlighted a favorable influence of CN in accelerating the scaffold degradation over a period of one year. Finally, the oto- and cytocompatibility response of the nanocomposite substrates corroborated their biological relevance for the reconstruction of perforated eardrums.


Subject(s)
Phthalic Acids , Tympanic Membrane , Chitin/pharmacology , Tissue Engineering , Polyethylene Terephthalates , Tissue Scaffolds
9.
Polymers (Basel) ; 14(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36559746

ABSTRACT

Effective converse piezoelectric coefficient (d33,eff) mapping of poly(vinylidene fluoride) (PVDF) nanofibers with ceramic BaTiO3 nanoparticle inclusions obtained by electrospinning was carried out by piezoresponse force microscopy (PFM) in a peculiar dynamic mode, namely constant-excitation frequency-modulation (CE-FM), particularly suitable for the analysis of compliant materials. Mapping of single nanocomposite fibers was carried out to demonstrate the ability of CE-FM-PFM to investigate the nanostructure of semicrystalline polymers well above their glass transition temperature, such as PVDF, by revealing the distribution of piezoelectric activity of the nanofiber, as well as of the embedded nanoparticles employed. A decreased piezoelectric activity at the nanoparticle site compared to the polymeric fiber was found. This evidence can be rationalized in terms of a tradeoff between the dielectric constants and piezoelectric coefficients of the component materials, as well as on the mutual orientation of polar axes.

10.
Molecules ; 27(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234738

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties. This study aimed at incorporating OLE inside poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) fibers via electrospinning to obtain bioactive bio-based blends that are useful in wound healing. PHBHV/OLE electrospun fibers with a size of 1.29 ± 0.34 µm were obtained. Fourier transform infrared chemical analysis showed a uniform surface distribution of hydrophilic -OH groups, confirming the presence of OLE in the electrospun fibers. The main OLE phenols were released from the fibers within 6 days. The biodegradation of the scaffolds in phosphate buffered saline was investigated, demonstrating an adequate stability in the presence of metalloproteinase 9 (MMP-9), an enzyme produced in chronic wounds. The scaffolds were preliminarily tested in vitro with HFFF2 fibroblasts and HaCaT keratinocytes, suggesting adequate cytocompatibility. PHBHV/OLE fiber meshes hold promising features for wound healing, including the treatment of ulcers, due to the long period of durability in an inflamed tissue environment and adequate cytocompatibility.


Subject(s)
Polyhydroxyalkanoates , Antioxidants/pharmacology , Hydroxybutyrates/pharmacology , Matrix Metalloproteinase 9 , Olea , Pentanoic Acids , Phosphates , Plant Extracts , Polyesters/chemistry , Polyhydroxyalkanoates/chemistry , Polyphenols , Prospective Studies , Tissue Engineering , Tissue Scaffolds/chemistry , Wound Healing
11.
Molecules ; 27(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35956974

ABSTRACT

In this study, for the first time, a composite fluff pulp was produced based on the combination of softwood (i.e., long-length fiber), hardwood (i.e., short-length fiber), non-wooden pulps (i.e., bagasse) and bentonite, with specific amounts to be used in hygienic pads (e.g., baby diapers and sanitary napkins). After the defibration process, the manufactured fluff pulp was placed as an absorbent mass in diapers and sanitary napkins. Therefore, tests related to the fluff pulp, such as grammage, thickness, density, ash content, humidity percentage, pH and brightness, tests related to the manufactured baby diapers, such as absorption capacity, retention rate, retention capacity, absorption time and rewet, and tests related to the sanitary napkin, such as absorption capacity and rewet, were performed according to the related standards. The results demonstrated that increasing the amount of bagasse pulp led to increasing the ash content, pH and density of fluff pulp and decreasing the brightness. The addition of bentonite as a filler also increased ash content and pH of fluff pulp. The results also demonstrated that increasing of bagasse pulp up to 30% in combination with softwood pulp led to increasing absorption capacity, retention rate, retention capacity, absorption time and rewet of baby diapers and of sanitary napkins.


Subject(s)
Bentonite , Skin , Humans , Industry , Infant
12.
Pharmaceutics ; 13(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575515

ABSTRACT

Chitin nanofibrils (CNs) are an emerging bio-based nanomaterial. Due to nanometric size and high crystallinity, CNs lose the allergenic features of chitin and interestingly acquire anti-inflammatory activity. Here we investigate the possible advantageous use of CNs in tympanic membrane (TM) scaffolds, as they are usually implanted inside highly inflamed tissue environment due to underlying infectious pathologies. In this study, the applications of CNs in TM scaffolds were twofold. A nanocomposite was used, consisting of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer loaded with CN/polyethylene glycol (PEG) pre-composite at 50/50 (w/w %) weight ratio, and electrospun into fiber scaffolds, which were coated by CNs from crustacean or fungal sources via electrospray. The degradation behavior of the scaffolds was investigated during 4 months at 37 °C in an otitis-simulating fluid. In vitro tests were performed using cell types to mimic the eardrum, i.e., human mesenchymal stem cells (hMSCs) for connective, and human dermal keratinocytes (HaCaT cells) for epithelial tissues. HMSCs were able to colonize the scaffolds and produce collagen type I. The inflammatory response of HaCaT cells in contact with the CN-coated scaffolds was investigated, revealing a marked downregulation of the pro-inflammatory cytokines. CN-coated PEOT/PBT/(CN/PEG 50:50) scaffolds showed a significant indirect antimicrobial activity.

13.
Materials (Basel) ; 14(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34500997

ABSTRACT

Wound dressings are high performance and high value products which can improve the regeneration of damaged skin. In these products, bioresorption and biocompatibility play a key role. The aim of this study is to provide progress in this area via nanofabrication and antimicrobial natural materials. Polyhydroxyalkanoates (PHAs) are a bio-based family of polymers that possess high biocompatibility and skin regenerative properties. In this study, a blend of poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxyoctanoate-co-3-hydroxy decanoate) (P(3HO-co-3HD)) was electrospun into P(3HB))/P(3HO-co-3HD) nanofibers to obtain materials with a high surface area and good handling performance. The nanofibers were then modified with silver nanoparticles (AgNPs) via the dip-coating method. The silver-containing nanofiber meshes showed good cytocompatibility and interesting immunomodulatory properties in vitro, together with the capability of stimulating the human beta defensin 2 and cytokeratin expression in human keratinocytes (HaCaT cells), which makes them promising materials for wound dressing applications.

14.
J Mech Behav Biomed Mater ; 122: 104669, 2021 10.
Article in English | MEDLINE | ID: mdl-34280866

ABSTRACT

Over the past decades, electronics have become central to many aspects of biomedicine and wearable device technologies as a promising personalized healthcare platform. Lead-free piezoelectric materials for converting mechanical into electrical energy through piezoelectric transduction are of significant value in a diverse range of technological applications. Organic piezoelectric biomaterials have attracted widespread attention as the functional materials in the biomedical devices due to their advantages of excellent biocompatibility. They include synthetic and biological polymers. Many biopolymers have been discovered to possess piezoelectricity in an appreciable amount, however their investigation is still preliminary. Due to their piezoelectric properties, better known synthetic fluorinated polymers have been intensively investigated and applied in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. Piezoelectric polymers, especially poly (vinylidene fluoride) (PVDF) and its copolymers are increasingly receiving interest as smart biomaterials due to their ability to convert physiological movements to electrical signals when in a controllable and reproducible manner. Despite possessing the greatest piezoelectric coefficients among all piezoelectric polymers, it is often desirable to increase the electrical outputs. The most promising routes toward significant improvements in the piezoelectric response and energy-harvesting performance of such materials is loading them with various inorganic nanofillers and/or applying some modification during the fabrication process. This paper offers a comprehensive review of the principles, properties, and applications of organic piezoelectric biomaterials (polymers and polymer/ceramic composites) with special attention on PVDF-based polymers and their composites in sensors, drug delivery and tissue engineering. Subsequently focuses on the most common fabrication routes to produce piezoelectric scaffolds, tissue and sensors which is electrospinning process. Promising upcoming strategies and new piezoelectric materials and fabrication techniques for these applications are presented to enable a future integration among these applications.


Subject(s)
Polymers , Tissue Engineering , Biocompatible Materials , Electricity , Electronics
15.
Molecules ; 26(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299649

ABSTRACT

Cosmetics has recently focused on biobased skin-compatible materials. Materials from natural sources can be used to produce more sustainable skin contact products with enhanced bioactivity. Surface functionalization using natural-based nano/microparticles is thus a subject of study, aimed at better understanding the skin compatibility of many biopolymers also deriving from biowaste. This research investigated electrospray as a method for surface modification of cellulose tissues with chitin nanofibrils (CNs) using two different sources-namely, vegetable (i.e., from fungi), and animal (from crustaceans)-and different solvent systems to obtain a biobased and skin-compatible product. The surface of cellulose tissues was uniformly decorated with electrosprayed CNs. Biological analysis revealed that all treated samples were suitable for skin applications since human dermal keratinocytes (i.e., HaCaT cells) successfully adhered to the processed tissues and were viable after being in contact with released substances in culture media. These results indicate that the use of solvents did not affect the final cytocompatibility due to their effective evaporation during the electrospray process. Such treatments did not also affect the characteristics of cellulose; in addition, they showed promising anti-inflammatory and indirect antimicrobial activity toward dermal keratinocytes in vitro. Specifically, cellulosic substrates decorated with nanochitins from shrimp showed strong immunomodulatory activity by first upregulating then downregulating the pro-inflammatory cytokines, whereas nanochitins from mushrooms displayed an overall anti-inflammatory activity via a slight decrement of the pro-inflammatory cytokines and increment of the anti-inflammatory marker. Electrospray could represent a green method for surface modification of sustainable and biofunctional skincare products.


Subject(s)
Agaricales/chemistry , Cellulose/pharmacology , Chitin/pharmacology , Cosmetics/pharmacology , Dermis/metabolism , Keratinocytes/metabolism , Penaeidae/chemistry , Animals , Cell Line , Cellulose/chemistry , Chitin/chemistry , Cosmetics/chemistry , Humans , Nanostructures
16.
Front Bioeng Biotechnol ; 9: 669863, 2021.
Article in English | MEDLINE | ID: mdl-34164386

ABSTRACT

Perforation is the most common illness of the tympanic membrane (TM), which is commonly treated with surgical procedures. The success rate of the treatment could be improved by novel bioengineering approaches. In fact, a successful restoration of a damaged TM needs a supporting biomaterial or scaffold able to meet mechano-acoustic properties similar to those of the native TM, along with optimal biocompatibility. Traditionally, a large number of biological-based materials, including paper, silk, Gelfoam®, hyaluronic acid, collagen, and chitosan, have been used for TM repair. A novel biopolymer with promising features for tissue engineering applications is cellulose. It is a highly biocompatible, mechanically and chemically strong polysaccharide, abundant in the environment, with the ability to promote cellular growth and differentiation. Bacterial cellulose (BC), in particular, is produced by microorganisms as a nanofibrous three-dimensional structure of highly pure cellulose, which has thus become a popular graft material for wound healing due to a number of remarkable properties, such as water retention, elasticity, mechanical strength, thermal stability, and transparency. This review paper provides a comprehensive overview of the current experimental studies of BC, focusing on the application of BC patches in the treatment of TM perforations. In addition, computational approaches to model cellulose and TM are summarized, with the aim to synergize the available tools toward the best design and exploitation of BC patches and scaffolds for TM repair and regeneration.

17.
J Funct Biomater ; 11(3)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899241

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a family of bio-based polyesters that have found different biomedical applications. Chitin and lignin, byproducts of fishery and plant biomass, show antimicrobial and anti-inflammatory activity on the nanoscale. Due to their polarities, chitin nanofibril (CN) and nanolignin (NL) can be assembled into micro-complexes, which can be loaded with bioactive factors, such as the glycyrrhetinic acid (GA) and CN-NL/GA (CLA) complexes, and can be used to decorate polymer surfaces. This study aims to develop completely bio-based and bioactive meshes intended for wound healing. Poly(3-hydroxybutyrate)/Poly(3-hydroxyoctanoate-co-3-hydroxydecanoate), P(3HB)/P(3HO-co-3HD) was used to produce films and fiber meshes, to be surface-modified via electrospraying of CN or CLA to reach a uniform distribution. P(3HB)/P(3HO-co-3HD) fibers with desirable size and morphology were successfully prepared and functionalized with CN and CLA using electrospinning and tested in vitro with human keratinocytes. The presence of CN and CLA improved the indirect antimicrobial and anti-inflammatory activity of the electrospun fiber meshes by downregulating the expression of the most important pro-inflammatory cytokines and upregulating human defensin 2 expression. This natural and eco-sustainable mesh is promising in wound healing applications.

18.
J Funct Biomater ; 11(3)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971968

ABSTRACT

Being designated to protect other tissues, skin is the first and largest human body organ to be injured and for this reason, it is accredited with a high capacity for self-repairing. However, in the case of profound lesions or large surface loss, the natural wound healing process may be ineffective or insufficient, leading to detrimental and painful conditions that require repair adjuvants and tissue substitutes. In addition to the conventional wound care options, biodegradable polymers, both synthetic and biologic origin, are gaining increased importance for their high biocompatibility, biodegradation, and bioactive properties, such as antimicrobial, immunomodulatory, cell proliferative, and angiogenic. To create a microenvironment suitable for the healing process, a key property is the ability of a polymer to be spun into submicrometric fibers (e.g., via electrospinning), since they mimic the fibrous extracellular matrix and can support neo- tissue growth. A number of biodegradable polymers used in the biomedical sector comply with the definition of bio-based polymers (known also as biopolymers), which are recently being used in other industrial sectors for reducing the material and energy impact on the environment, as they are derived from renewable biological resources. In this review, after a description of the fundamental concepts of wound healing, with emphasis on advanced wound dressings, the recent developments of bio-based natural and synthetic electrospun structures for efficient wound healing applications are highlighted and discussed. This review aims to improve awareness on the use of bio-based polymers in medical devices.

19.
Tissue Eng Part A ; 26(23-24): 1312-1331, 2020 12.
Article in English | MEDLINE | ID: mdl-32842903

ABSTRACT

Due to the morbidity and lethality of pulmonary diseases, new biomaterials and scaffolds are needed to support the regeneration of lung tissues, while ideally providing protective effects against inflammation and microbial aggression. In this study, we investigated the potential of nanocomposites of poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] incorporating zinc oxide (ZnO), in the form of electrospun fiber meshes for lung tissue engineering. We focused on their anti-inflammatory, antimicrobial, and mechanoelectrical character according to different fiber mesh textures (i.e., collected at 500 and 4000 rpm) and compositions: (0/100) and (20/80) w/w% ZnO/P(VDF-TrFE), plain and composite, respectively. The scaffolds were characterized in terms of morphological, physicochemical, mechanical, and piezoelectric properties, as well as biological response of A549 alveolar epithelial cells in presence of lung-infecting bacteria. By virtue of ZnO, the composite scaffolds showed a strong anti-inflammatory response in A549 cells, as demonstrated by a significant decrease of interleukin (IL) IL-1α, IL-6, and IL-8 expression in 6 h. In all the scaffold types, but remarkably in the aligned composite ones, transforming growth factor ß (TGF-ß) and the antimicrobial peptide human ß defensin-2 (HBD-2) were significantly increased. The ZnO/P(VDF-TrFE) electrospun fiber meshes hindered the biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa and the cell/scaffold constructs were able to impede S. aureus adhesion and S. aureus and P. aeruginosa invasiveness, independent of the scaffold type. The data obtained suggested that the composite scaffolds showed potential for tunable mechanical properties, in the range of alveolar walls and fibers. Finally, we also showed good piezoelectricity, which is a feature found in elastic and collagen fibers, the main extracellular matrix molecules in lungs. The combination of all these properties makes ZnO/P(VDF-TrFE) fiber meshes promising for lung repair and regeneration. Impact statement Airway tissue engineering is still a major challenge and an optimally designed scaffold for this application should fulfill a number of key requirements. To help lung repair and regeneration, this study proposes a nondegradable scaffold, with potential for tuning mechanical properties. This scaffold possesses a strong anti-inflammatory character, and is able to hinder microbial infections, sustain epithelial cell growth, and provide physiological signals, like piezoelectricity. The development of such a device could help the treatment of pulmonary deficiency, including the ones induced by inflammatory phenomena, primary and secondary to pathogen infections.


Subject(s)
Lung , Tissue Engineering , Tissue Scaffolds , Zinc Oxide , A549 Cells , Bacterial Adhesion , Humans , Hydrocarbons, Fluorinated , Polyvinyls , Pseudomonas aeruginosa , Staphylococcus aureus , Vinyl Compounds
20.
Biointerphases ; 15(3): 031004, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32434336

ABSTRACT

Sensorineural hearing loss (SNHL) affects the inner ear compartment and can be caused by different factors. Usually, the lack, death, or malfunction of sensory cells deputed to transduction of mechanic-into-electric signals leads to SNHL. To date, the therapeutic option for patients impaired by severe or profound SNHL is the cochlear implant (CI), a high-tech electronic device replacing the entire cochlear function. Piezoelectric materials have catalyzed attention to stimulate the auditory neurons by simply mimicking the function of the cochlear sensory epithelium. In this study, the authors investigated lithium niobate (LiNbO3) as a potential candidate material for next generation CIs. LiNbO3 nanoparticles resulted otocompatible with inner ear cells in vitro, had a pronounced immunomodulatory activity, enhanced human beta-defensin in epithelial cells, and showed direct antibacterial activity against P. aeruginosa. Moreover, LiNbO3 nanoparticles were incorporated into poly(vinylidene fluoride-trifluoro ethylene) fibers via electrospinning, which enhanced the piezoelectric response. Finally, the resulting fibrous composite structures support human neural-like cell growth in vitro, thus showing promising features to be used in new inner ear devices.


Subject(s)
Ear, Inner/physiology , Nanoparticles/chemistry , Niobium/chemistry , Oxides/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Cell Line , Cell Survival , Humans , Immunologic Factors/pharmacology , Mice , Microbial Sensitivity Tests , Nanoparticles/ultrastructure , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Rats , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...