Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Plant Physiol Biochem ; 127: 320-335, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29653435

ABSTRACT

Oil palm is grown in tropical soils with low bioavailability of Pi. A cDNA clone specifically expressed under phosphate-starvation condition in oil palm roots was identified as a high-affinity phosphate transporter (EgPHT1). The deduced amino acid sequence has 6 transmembrane domains each at the N- and C-termini separated by a hydrophilic linker. Comparison of promoter motifs within 1500 bp upstream of ATG of 10 promoters from high- and low-affinity phosphate transporter from both dicots and monocots including EgPHT1 was performed. The EgPHT1 promoter was fused to ß-glucuronidase (GUS) reporter gene and its activity was analysed by histochemical and fluorometric GUS assays in transiently transformed oil palm tissues and T3 homozygous transgenic Arabidopsis plants. In response to Pi-starvation, no GUS activity was detected in oil palm leaves, but a strong inducible activity was observed in the roots (1.4 times higher than the CaMV35S promoter). GUS was specifically expressed in transgenic Arabidopsis roots under Pi deficiency and starvation of the other macronutrients (N and K) did not induce GUS activity. Eight motifs including ABRERATCAL (abscisic-acid responsive), RHERPATEXPA7 (root hair-specific), SURECOREATSULTR11 (sulfur-deficiency response), LTRECOREATCOR15 (temperature-stress response), MYB2CONSENSUSAT and ACGTATERD1 (water-stress response) as well as two novel motifs, 3 (TAAAAAAA) and 26 (TTTTATGT) identified through pattern discovery, occur at significantly higher frequency (p < 0.05) in the high-than the low-affinity phosphate transporter promoters. The Pi deficiency-responsive elements in EgPHT1 includes the P1BS, W-box, E-box and the G-box. Thus, EgPHT1 is important for improving Pi uptake in oil palm with potential for engineering efficient Pi acquisition.


Subject(s)
Arabidopsis , Arecaceae , Phosphate Transport Proteins , Phosphates/deficiency , Plant Proteins , Plants, Genetically Modified , Promoter Regions, Genetic/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arecaceae/genetics , Arecaceae/metabolism , Phosphate Transport Proteins/biosynthesis , Phosphate Transport Proteins/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
2.
Curr Genet ; 61(4): 653-63, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25986972

ABSTRACT

An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.


Subject(s)
Agrobacterium tumefaciens/genetics , Brassica/genetics , DNA, Complementary/genetics , Hypocotyl/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Transformation, Genetic , Acetophenones/pharmacology , Adaptation, Physiological/genetics , Agrobacterium tumefaciens/metabolism , Arabidopsis/genetics , Brassica/drug effects , Brassica/metabolism , Brassica/microbiology , DNA, Complementary/metabolism , Gene Expression , Genetic Vectors , Hot Temperature , Hypocotyl/drug effects , Hypocotyl/metabolism , Hypocotyl/microbiology , Kinetin/pharmacology , Phenylurea Compounds/pharmacology , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/genetics , Reverse Transcriptase Polymerase Chain Reaction , Thiadiazoles/pharmacology , Transcription Factors/metabolism , Transgenes , Zeatin/pharmacology
3.
ScientificWorldJournal ; 2014: 943054, 2014.
Article in English | MEDLINE | ID: mdl-24605069

ABSTRACT

The use of in vitro culture has been accepted as an efficient technique for clonal propagation of many woody plants. In the present research, we report the results of a number of experiments aimed at optimizing micropropagation protocol for tea (Camellia sinensis (L.) O. Kuntze) (clone Iran 100) using nodal segments as the explant. The effect of different combinations and concentrations of plant growth regulators (PGR) (BAP, TDZ, GA3) on shoot multiplication and elongation was assessed. The influence of exposure to IBA in liquid form prior to transfer to solid media on rooting of tea microshoots was investigated. The results of this study showed that the best treatment for nodal segment multiplication in terms of the number of shoot per explant and shoot elongation was obtained using 3 mg/L BAP in combination with 0.5 mg/L GA3. TDZ was found to be inappropriate for multiplication of tea clone Iran 100 as it resulted in hyperhydricity especially at concentrations higher than 0.05 mg/L. Healthy shoots treated with 300 mg/L IBA for 30 min followed by transfer to 1/2 strength MS medium devoid of PGR resulted in 72.3% of shoots producing roots and upon transferring them to acclimatization chamber 65% survival was obtained prior to field transfer.


Subject(s)
Camellia sinensis/growth & development , Cytokinins/pharmacology , Gibberellins/pharmacology , Plant Growth Regulators/pharmacology , Plant Shoots/drug effects , Plant Shoots/growth & development , Analysis of Variance , Camellia sinensis/drug effects , Dose-Response Relationship, Drug
4.
Electron. j. biotechnol ; 16(5): 4-4, Sept. 2013. ilus, tab
Article in English | LILACS | ID: lil-690464

ABSTRACT

Background: Broccoli, Brassica oleracea subsp. italica is one of the many valuable Brassica species which is still less cultured under in vitro condition. Heat tolerant transgenic and non-transgenic broccoli cv. Green Marvel plantlets with well-developed root system obtained through in vitro culture were transferred into disposable plastic pots containing sterilized potting mixture consisting of (peatgroTM) + coconut dust (2:1) and maintained in a growth chamber. Results: After one month, the hardened plantlets were transferred and maintained in a transgenic greenhouse. After four months of acclimatization in the transgenic greenhouse, the efficacy of HSP101 gene in increasing the heat tolerance of the transgenic broccoli was evaluated. Results showed that the transgenic plants could survive and performed normally, producing flower heads even at the highest tested temperature of 34ºC. Seven transgenic broccoli lines with different gene copy number of the AtHSP101 gene as well as the control plant were assessed for genetic diversity using inter simple sequence repeat (ISSR) markers. Conclusions: ISSR results showed polymorphism and phylogenetic relationship between the transgenic and non-transgenic (control) Brassica oleracea cv. Green Marvel.


Subject(s)
Genetic Variation , Brassica/genetics , Brassica/metabolism , Microsatellite Repeats , Phylogeny , Polymorphism, Genetic , In Vitro Techniques , Plants, Genetically Modified , Greenhouses , Thermotolerance , Heat-Shock Proteins/genetics
5.
J Plant Physiol ; 170(3): 346-54, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23290536

ABSTRACT

Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the ß-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T(0)). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T(1)) produced the highest GUS activity when treated with 150 µM Cu(2+) compared to the control (without Cu(2+)). However, Zn(2+) and Fe(2+) treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T(1) seedlings of tomato when subjected to Cu(2+) ions.


Subject(s)
Arecaceae/genetics , Copper/metabolism , Metallothionein/metabolism , Metals, Heavy/metabolism , Promoter Regions, Genetic/genetics , Seedlings/enzymology , Seedlings/genetics , Solanum lycopersicum/genetics , Arecaceae/enzymology , Fruit/enzymology , Gene Expression Regulation, Plant , Glucuronidase/metabolism , Solanum lycopersicum/enzymology , Plant Leaves/enzymology , Plant Roots/enzymology , Plants, Genetically Modified/enzymology , Seeds/enzymology , Stress, Physiological
6.
Molecules ; 16(11): 8930-44, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-22027950

ABSTRACT

The study was couducted to investigate the effects of gamma irradiation and CO2 on flavonoid content and leaf gas exchange in C.asiatica. For flavonoid determination, the design was a split split plot based on Randomized Complete Block Design (RCBD). For other parameters, the designs were split plots. Statistical tests revealed significant differences in flavonoid contents of Centella asiatica leaves between different growth stages and various CO2 treatments. CO2 400, G20 (400 = ambient CO2; G20 = Plants exposed to 20 Gy) showed 82.90% higher total flavonoid content (TFC) in the 5th week than CO2 400 as control at its best harvest time (4th week). Increasing the concentration of CO2 from 400 to 800 µmol/mol had significant effects on TFC and harvesting time. In fact, 800 µmol/mol resulted in 171.1% and 66.62% increases in TFC for control and irradiated plants, respectively. Moreover, increasing CO2 concentration reduced the harvesting time to three and four weeks for control and irradiated plants, respectively. Enhancing CO2 to 800 µmol/mol resulted in a 193.30% (CO2 800) increase in leaf biomass compared to 400 µmol/mol and 226.34% enhancement in irradiated plants (CO2 800, G20) [800 = Ambient CO2; G20 = Plants exposed to 20 Gy] than CO2 400, G20. In addition, the CO2 800, G20 had the highest amount of flavonoid*biomass in the 4th week. The results of this study indicated that all elevated CO2 treatments had higher PN than the ambient ones. The findings showed that when CO2 level increased from 400 to 800 µmol/mol, stomatal conductance, leaf intercellular CO2 and transpiration rate had the tendency to decrease. However, water use efficiency increased in response to elevated CO2 concentration. Returning to the findings of this study, it is now possible to state that the proposed method (combined CO2 and gamma irradiation) has the potential to increase the product value by reducing the time to harvest, increasing the yield per unit area via boosting photosynthesis capacity, as well as increasing biochemicals (flavonoids) per gram DM.


Subject(s)
Carbon Dioxide/pharmacology , Centella , Flavonoids/metabolism , Gases/metabolism , Plant Leaves , Animals , Biomass , Centella/drug effects , Centella/metabolism , Centella/radiation effects , Environment, Controlled , Humans , Lipid Peroxidation , Malondialdehyde/metabolism , Photosynthesis/drug effects , Photosynthesis/physiology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/radiation effects
7.
Molecules ; 16(6): 4994-5007, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21694666

ABSTRACT

In the present study, two accessions of Centella asiatica (CA03 and CA23) were subjected to gamma radiation to examine the response of these accessions in terms of survival rate, flavonoid contents, leaf gas exchange and leaf mass. Radiation Sensitivity Tests revealed that based on the survival rate, the LD(50) (gamma doses that killed 50% of the plantlets) of the plantlets were achieved at 60 Gy for CA03 and 40 Gy for CA23. The nodal segments were irradiated with gamma rays at does of 30 and 40 Gy for Centella asiatica accession 'CA03' and 20 and 30 Gy for accession 'CA23. The nodal segment response to the radiation was evaluated by recording the flavonoid content, leaf gas exchange and leaf biomass. The experiment was designed as RCBD with five replications. Results demonstrated that the irradiated plantlets exhibited greater total flavonoid contents (in eight weeks) significantly than the control where the control also exhibited the highest total flavonoid contents in the sixth week of growth; 2.64 ± 0.02 mg/g DW in CA03 and 8.94 ± 0.04 mg/g DW in CA23. The total flavonoid content was found to be highest after eight weeks of growth, and this, accordingly, stands as the best time for leaf harvest. Biochemical differentiation based on total flavonoid content revealed that irradiated plantlets in CA23 at 20 and 30 Gy after eight weeks contained the highest total flavonoid concentrations (16.827 ± 0.02; 16.837 ± 0.008 mg/g DW, respectively) whereas in CA03 exposed to 30 and 40 Gy was found to have the lowest total flavonid content (5.83 ± 0.11; 5.75 ± 0.03 mg/g DW). Based on the results gathered in this study, significant differences were found between irradiated accessions and control ones in relation to the leaf gas. The highest PN and gs were detected in CA23 as control followed by CA23 irradiated to 20Gy (CA23G20) and CA23G30 and the lowest PN and gs were observed in CA03 irradiated to 40Gy (CA03G40). Moreover, there were no significant differences in terms of PN and gs among the irradiated plants in each accession. The WUE of both irradiated accessions of Centella asiatica were reduced as compared with the control plants (p < 0.01) while Ci and E were enhanced. There were no significant differences in the gas exchange parameters among radiated plants in each accession. Moreover, malondialdehyde (MDA) of accessions after gamma treatments were significantly higher than the control, however, flavonoids which were higher concentration in irradiated plants can scavenge surplus free radicals. Therefore, the findings of this study have proven an efficient method of in vitro mutagenesis through gamma radiation based on the pharmaceutical demand to create economically superior mutants of C. asiatica. In other words, the results of this study suggest that gamma irradiation on C. asiatica can produce mutants of agricultural and economical importance.


Subject(s)
Centella/metabolism , Centella/radiation effects , Flavonoids/metabolism , Gamma Rays/adverse effects , Biomass , Centella/genetics , Lipid Metabolism/radiation effects , Mutation/radiation effects , Oxidation-Reduction/radiation effects , Photosynthesis/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects
8.
Molecules ; 16(11): 8981-91, 2011.
Article in English | MEDLINE | ID: mdl-22439138

ABSTRACT

The present study investigates the effects of different concentrations, as well as type of plant growth regulators (PGRs) and medium (MS, Duchefa) on the growth and development of Centella asiatica in semi-solid culture. In addition, a protocol for successful sterilization of C.asiatica explants prepared from field-grown plants highly exposed to fungal and bacterial contamination was determined. Results for sterilization treatments revealed that applying HgCl2 and Plant Preservative Mixture (PPM) with cetrimide, bavistin and trimethoprim which were included after washing with tap water, followed by the addition of PPM in the medium, produced a very satisfactory result (clean culture 90 ± 1.33%) and TS5 (decon + cetrimide 1% + bavistin 150 mg/L + trimethoprim 50 mg/L + HgCl20.1% + PPM 2% soak and 2 mL/L in medium) was hence chosen as the best method of sterilization for C.asiatica. The synergistic combination of 6 benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) in concentrations of 2 mg/L and 0.1 mg/L, respectively, in Duchefa medium compared with MS induced the most optimal percentage of sprouted shoots (93 ± 0.667), number of shoots (5.2 ± 0.079) and nodes (4 ± 0.067) per explant, leaf per explant (14 ± 0.107) and shoot length (4.1 ± 0.67 cm). Furthermore, optimum rooting frequency (95.2 ± 0.81%), the number of roots/shoot (7.5 ± 0.107) and the mean root length (4.5 ± 0.133 cm) occurred for shoots that were cultured on full-strength MS medium containing 0.5 mg/L indole-3-butyric acid (IBA). In this study, the acclimatized plantlets were successfully established with almost 85% survival. The findings of this study have proven an efficient medium and PGR concentration for the mass propagation of C.asiatica. These findings would be useful in micropropagation and ex situ conservation of this plant.


Subject(s)
Centella/growth & development , Centella/microbiology , Anti-Bacterial Agents/pharmacology , Benzimidazoles/pharmacology , Benzyl Compounds/pharmacology , Carbamates/pharmacology , Fungicides, Industrial/pharmacology , Naphthaleneacetic Acids/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/growth & development , Plant Shoots/growth & development , Plants, Medicinal/growth & development , Plants, Medicinal/microbiology , Purines/pharmacology , Soil , Trimethoprim/pharmacology
9.
J Biosci Bioeng ; 111(2): 217-25, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21044862

ABSTRACT

Reporter gene activity under the regulation of the oil palm metallothionein-like gene, MT3-A promoter was assessed in prokaryotes. Vector constructs containing MT3-A promoter with (W1MT3-A) and without (W2MT3-A) five prime untranslated region (5'-UTR) fused to ß-glucuronidase (GUS) gene in pCAMBIA 1304 vector were produced. 5'-rapid amplification of cDNA ends (RACE) using mRNA isolated from Escherichia coli and Agrobacterium tumefaciens harboring W1MT3-A confirmed that fusion transcripts of MT3-A 5'-UTR-GUS were successfully produced in both bacteria. Competitive PCR and GUS fluorometric assay showed changes in the level of GUS gene transcripts and enzyme activity in response to increasing concentrations of Cu²+ and Zn²+. The application of Cu²+ increased GUS activity and GUS mRNA level in both bacteria. In E. coli, a high level of GUS activity driven by W1MT3-A and W2MT3-A was observed in treatment with 25 µM Cu²+ resulting in an increase in the GUS mRNA level to 7.2 and 7.5 x 10⁻4 pmol/µl respectively, compared to the control (5.1 x 10⁻4 pmol/µl). The lowest GUS activity and GUS mRNA level were obtained for W1MT3-A and W2MT3-A in the presence of 100 µM Cu²+ in both bacteria compared to the control (without Cu²+). The application of different Zn²+ concentrations resulted in a strong decrease in the GUS activity and GUS mRNA level in E. coli and A. tumefaciens. These findings showed that the oil palm MT3-A promoter is functional in prokaryotes and produced detectable GUS transcripts and enzyme activities. This promoter may potentially be used in prokaryotic systems which require metal inducible gene expression.


Subject(s)
Agrobacterium tumefaciens/metabolism , Arecaceae/genetics , Escherichia coli/metabolism , Metallothionein/genetics , Promoter Regions, Genetic , Agrobacterium tumefaciens/genetics , Escherichia coli/genetics , Genes, Reporter , Genetic Vectors , Glucuronidase/genetics , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...