Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 176: 116808, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805967

ABSTRACT

Type 1 diabetes (T1D) is a chronic autoimmune condition that affects millions of people worldwide. Insulin pumps or injections are the standard treatment options for this condition. This article provides a comprehensive overview of the several type 1 diabetes treatment options, focusing on oral insulin. The article is divided into parts that include immune-focused treatments, antigen vaccination, cell-directed interventions, cytokine-directed interventions, and non-immunomodulatory adjuvant therapy. Under the section on non-immunomodulatory adjunctive treatment, the benefits and drawbacks of medications such as metformin, amylin, sodium-glucose cotransporter inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1 Ras), and verapamil are discussed. The article also discusses the advantages of oral insulin, including increased patient compliance and more dependable and regular blood sugar control. However, several variables, including the enzymatic and physical barriers of the digestive system, impair the administration of insulin via the mouth. Researchers have looked at a few ways to get over these challenges, such as changing the structure of the insulin molecule, improving absorption with the use of absorption enhancers or nanoparticles, and taking oral insulin together with other medications. Even with great advancements in the use of these treatment strategies, T1D still needs improvement in the therapeutic difficulties. Future studies in these areas should focus on creating tailored immunological treatments, looking into combination medications, and refining oral insulin formulations in an attempt to better control Type 1 Diabetes. The ultimate objective is to create accurate, customized strategies that will enhance glycemic management and the quality of life for individuals with the condition.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemic Agents , Insulin , Humans , Diabetes Mellitus, Type 1/drug therapy , Insulin/administration & dosage , Insulin/therapeutic use , Administration, Oral , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Animals
2.
Prog Mol Biol Transl Sci ; 206: 11-54, 2024.
Article in English | MEDLINE | ID: mdl-38811078

ABSTRACT

The main cause of many neurodegenerative diseases and systemic amyloidoses is protein and peptide aggregation and the formation of amyloid fibrils. The study of aggregation mechanisms, the discovery and description of aggregate structures, and a comprehensive understanding of the molecular mechanisms of amyloid formation are of great importance for the diagnostic processes at the molecular level and for the development of therapeutic strategies to counter aggregation-associated disorders. Given that understanding protein misfolding phenomena is directly related to the protein folding process, we will briefly explain the protein folding mechanism and then discuss the important factors involved in protein aggregation. In the following, we review different mechanisms of amyloid formation and finally represent the current knowledge on how amyloid fibrils are formed based on kinetic and thermodynamic factors.


Subject(s)
Amyloid , Protein Aggregates , Amyloid/metabolism , Amyloid/chemistry , Humans , Animals , Protein Folding , Kinetics , Thermodynamics , Protein Aggregation, Pathological/metabolism
3.
Prog Mol Biol Transl Sci ; 206: 435-472, 2024.
Article in English | MEDLINE | ID: mdl-38811087

ABSTRACT

Protein aggregates and amyloid fibrils have special qualities and are used in a variety of biotechnological applications. They are extensively employed in bioremediation, biomaterials, and biocatalysis. Because of their capacity to encapsulate and release pharmaceuticals and their sensitivity to certain molecules, respectively, they are also used in drug delivery and biosensor applications. They have also demonstrated potential in the domains of food and bioremediation. Additionally, amyloid peptides have drawn interest in biological applications, especially in the investigation of illnesses like Parkinson's and Alzheimer's. The unique characteristics of amyloid fibrils, namely their mechanical strength and ß-sheet structure, make them adaptable to a wide range of biotechnological uses. Even with their promise, one important factor to keep in mind before widely using modified amyloid materials is their potential toxicity. Thus, current research aims to overcome safety concerns while maximizing their potential.


Subject(s)
Amyloid , Biotechnology , Amyloid/chemistry , Amyloid/metabolism , Humans , Animals
4.
Prog Mol Biol Transl Sci ; 206: 291-340, 2024.
Article in English | MEDLINE | ID: mdl-38811084

ABSTRACT

Many diseases are caused by misfolded and denatured proteins, leading to neurodegenerative diseases. In recent decades researchers have developed a variety of compounds, including polymeric inhibitors and natural compounds, antibodies, and chaperones, to inhibit protein aggregation, decrease the toxic effects of amyloid fibrils, and facilitate refolding proteins. The causes and mechanisms of amyloid formation are still unclear, and there are no effective treatments for Amyloid diseases. This section describes research and achievements in the field of inhibiting amyloid accumulation and also discusses the importance of various strategies in facilitating the removal of aggregates species (refolding) in the treatment of neurological diseases such as chemical methods like as, small molecules, metal chelators, polymeric inhibitors, and nanomaterials, as well as the use of biomolecules (peptide and, protein, nucleic acid, and saccharide) as amyloid inhibitors, are also highlighted.


Subject(s)
Amyloid , Humans , Amyloid/metabolism , Amyloid/chemistry , Animals , Protein Aggregates/drug effects
5.
Prog Mol Biol Transl Sci ; 206: 55-83, 2024.
Article in English | MEDLINE | ID: mdl-38811089

ABSTRACT

Protein aggregation is a complex process with several stages that lead to the formation of complex structures and shapes with a broad variability in stability and toxicity. The aggregation process is affected by various factors and environmental conditions that disrupt the protein's original state, including internal factors like mutations, expression levels, and polypeptide chain truncation, as well as external factors, such as dense molecular surroundings, post-translation modifications, and interactions with other proteins, nucleic acids, small molecules, metal ions, chaperones, and lipid membranes. During the aggregation process, the biological activity of an aggregating protein may be reduced or eliminated, whereas the resulting aggregates may have the potential to be immunogenic, or they may have other undesirable properties. Finding the cause(s) of protein aggregation and controlling it to an acceptable level is among the most crucial topics of research in academia and biopharmaceutical companies. This chapter aims to review intrinsic pathways of protein aggregation and potential extrinsic variables that influence this process.


Subject(s)
Amyloid , Amyloid/metabolism , Humans , Animals , Protein Aggregates
6.
Prog Mol Biol Transl Sci ; 206: 111-141, 2024.
Article in English | MEDLINE | ID: mdl-38811079

ABSTRACT

Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.


Subject(s)
Amyloid , Protein Multimerization , Humans , Animals , Amyloid/metabolism , Amyloid/chemistry
7.
Cell Commun Signal ; 22(1): 126, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360719

ABSTRACT

Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.


Subject(s)
Anemia , COVID-19 , Hematologic Neoplasms , Humans , SARS-CoV-2 , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Risk Factors , Anemia/complications , Anemia/epidemiology , Anemia/therapy
8.
Hum Cell ; 37(1): 139-153, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37924488

ABSTRACT

According to the findings of recent research, Helicobacter Pylori (H. pylori) infection is not only the primary cause of gastric cancer (GC), but it is also linked to the spread and invasion of GC through a number of processes and factors that contribute to virulence. In this study, we discussed that H. pylori infection can increase autophagy in GC tumor cells, leading to poor prognosis in such patients. Until now, the main concerns have been focused on H. pylori's role in GC development. According to our hypothesis, however, H. pylori infection may also lead to GC dormancy, metastasis, and recurrence by stimulating autophagy. Therefore, understanding how H. pylori possess these processes through its virulence factors and various microRNAs can open new windows for providing new prevention and/or therapeutic approaches to combat GC dormancy, metastasis, and recurrence which can occur in GC patients with H. pylori infection with targeting autophagy and eradicating H. pylori infection.


Subject(s)
Helicobacter Infections , Helicobacter pylori , MicroRNAs , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Helicobacter Infections/complications , Helicobacter Infections/drug therapy , Helicobacter Infections/pathology , MicroRNAs/genetics , Autophagy/genetics
9.
Cell Commun Signal ; 21(1): 252, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735675

ABSTRACT

Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Humans , Bone Marrow Cells , Cell Proliferation , Signal Transduction , Tumor Microenvironment
10.
Cell Commun Signal ; 21(1): 143, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328876

ABSTRACT

In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Epithelial-Mesenchymal Transition
11.
Inflammopharmacology ; 31(3): 1029-1052, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37079169

ABSTRACT

According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as ß cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications.


Subject(s)
COVID-19 , Diabetes Mellitus , Humans , SARS-CoV-2 , Cytokine Release Syndrome , Inflammation , Cytokines
12.
Inflammopharmacology ; 31(1): 21-35, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36609716

ABSTRACT

Despite community vaccination against coronavirus disease 2019 (COVID-19) and reduced mortality, there are still challenges in treatment options for the disease. Due to the continuous mutation of SARS-CoV-2 virus and the emergence of new strains, diversity in the use of existing antiviral drugs to combat the epidemic has become a crucial therapeutic chance. As a broad-spectrum antiparasitic and antiviral drug, ivermectin has traditionally been used to treat many types of disease, including DNA and RNA viral infections. Even so, based on currently available data, it is still controversial that ivermectin can be used as one of the effective antiviral agents to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or not. The aim of this study was to provide comprehensive information on ivermectin, including its safety and efficacy, as well as its adverse effects in the treatment of COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Ivermectin/therapeutic use , Antiviral Agents/therapeutic use
13.
Cell Commun Signal ; 20(1): 186, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36419156

ABSTRACT

Innate and adaptive immune cells patrol and survey throughout the human body and sometimes reside in the tumor microenvironment (TME) with a variety of cell types and nutrients that may differ from those in which they developed. The metabolic pathways and metabolites of immune cells are rooted in cell physiology, and not only provide nutrients and energy for cell growth and survival but also influencing cell differentiation and effector functions. Nowadays, there is a growing awareness that metabolic processes occurring in cancer cells can affect immune cell function and lead to tumor immune evasion and angiogenesis. In order to safely treat cancer patients and prevent immune checkpoint blockade-induced toxicities and autoimmunity, we suggest using anti-angiogenic drugs solely or combined with Immune checkpoint blockers (ICBs) to boost the safety and effectiveness of cancer therapy. As a consequence, there is significant and escalating attention to discovering techniques that target metabolism as a new method of cancer therapy. In this review, a summary of immune-metabolic processes and their potential role in the stimulation of intracellular signaling in TME cells that lead to tumor angiogenesis, and therapeutic applications is provided. Video abstract.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Signal Transduction , Cell Count , Immune Checkpoint Inhibitors , Metabolome
14.
Cell Commun Signal ; 20(1): 172, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316776

ABSTRACT

Acute myeloid leukemia (AML) is a type of leukemia with a poor prognosis and survival characterized by abnormal cell proliferation and differentiation. Despite advances in treatment, AML still has a low complete remission rate, particularly in elderly patients, and recurrences are frequently seen even after complete remissions. The major challenge in treating AML is the resistance of leukemia cells to chemotherapy drugs. Thus, to overcome this issue, it can be crucial to conduct new investigations to explore the mechanisms of chemo-resistance in AML and target them. In this review, the potential role of autophagy induced by FLT3-ITD and acid ceramidase in chemo-resistance in AML patients are analyzed. With regard to the high prevalence of FLT3-ITD mutation (about 25% of AML cases) and high level of acid ceramidase in these patients, we hypothesized that both of these factors could lead to chemo-resistance by inducing autophagy. Therefore, pharmacological targeting of autophagy, FLT3-ITD, and acid ceramidase production could be a promising therapeutic approach for such AML patients to overcome chemo-resistance. Video abstract.


Subject(s)
Acid Ceramidase , Leukemia, Myeloid, Acute , Humans , Aged , Acid Ceramidase/genetics , Acid Ceramidase/therapeutic use , Mutation , Leukemia, Myeloid, Acute/drug therapy , Autophagy , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/therapeutic use
15.
Epigenomics ; 13(17): 1421-1437, 2021 09.
Article in English | MEDLINE | ID: mdl-34558980

ABSTRACT

Pituitary adenomas (PAs) are common cranial tumors that affect the quality of life in patients. Early detection of PA is beneficial for avoiding clinical complications of this disease and increasing the quality of life. Noncoding RNAs, including long noncoding RNA, miRNA and circRNA, regulate protein expression, mostly by inhibiting the translation process. Studies have shown that dysregulation of noncoding RNAs is associated with PA. Hence understanding the expression pattern of noncoding RNAs can be considered a promising method for developing biomarkers. This article reviews data on the expression pattern of dysregulated noncoding RNAs involved in PA. Possible molecular mechanisms by which the dysregulated noncoding RNA could possibly induce PA are also described.


Lay abstract Pituitary adenomas (PA) are benign, slow-growing tumors of the pituitary gland. The sooner the tumor is diagnosed, the sooner can the patient be treated with medication. The early detection of this disease can reduce the need for surgery to remove the tumor. Noncoding RNAs are small molecules that regulate the functions and behavior of different cells. When the intracellular or extracellular concentration of these small molecules is altered, the functions and behavior of cells and tissues can be affected and changed. Quantifying and analyzing these molecules is a promising tool for the early detection of different diseases, including PA. This article reviews alterations in these small molecules and the relationship between these alterations and the incidence of PA.


Subject(s)
Adenoma/genetics , Biomarkers, Tumor/genetics , MicroRNAs/genetics , Pituitary Neoplasms/genetics , RNA, Circular/genetics , RNA, Untranslated/genetics , Biotechnology , Humans , Pituitary Neoplasms/pathology , Quality of Life , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...