Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Biochem ; 45(4): e13645, 2021 04.
Article in English | MEDLINE | ID: mdl-33569805

ABSTRACT

This study aimed to investigate the role of Gelam honey (GH) in accelerating reepithelialization of corneal abrasion. Corneal epithelial cells (CEC) isolated from New Zealand white rabbit corneas, were cultured and circular-shaped wounds were created onto them, representing the corneal abrasion model. These wounds were treated with basal (BM) and cornea media (CM) supplemented with GH. The percentage of wound closure was measured on day 0, 3, and 5. Expressions of cytokeratin 3 (CK3), cluster of differentiation 44 (CD 44), and connexin 43 (Cx43) were analyzed via qRT-PCR and immunocytochemistry. The results showed CEC cultured in GH-enriched media reepithelialized faster compared to control. Corneal abrasion treated with CM supplemented with GH closed completely on day 5. CK3, CD44, and Cx43 expressions correspond to the stages of reepithelialization. In conclusion, GH promotes the healing of the ex vivo corneal abrasion model. Further explorations of its potential as adjuvant therapy in treating corneal injuries are needed. PRACTICAL APPLICATIONS: Honey has been reported to have many medicinal properties including antibacterial, anti-inflammatory, and the ability to promote skin wound healing. However, the effects of honey on corneal wound healing have not been fully elucidated. In the present study, we aimed to determine the effects of Gelam honey (GH), well-known local honey obtained from the beehive of Gelam trees (Melaleuca spp.), on the ex vivo corneal abrasion model via cell migration study and analysis of genes and proteins during corneal epithelial wound healing. GH has proven to have accelerated effects on the corneal epithelial cell migration during the closure of the ex vivo corneal abrasion wound model. The expressions of the genes and proteins of the corneal epithelial wound healing markers were in accordance with the stages of healing. Therefore, GH has the potential to be developed as adjuvant therapy in the form of GH-based eye drop in treating corneal injuries.


Subject(s)
Corneal Injuries , Honey , Animals , Cell Movement , Cornea , Corneal Injuries/drug therapy , Rabbits , Wound Healing
2.
BMC Med Educ ; 21(1): 50, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446203

ABSTRACT

BACKGROUND: The Anatomy Education Environment Measurement Inventory (AEEMI) evaluates the perception of medical students of educational climates with regard to teaching and learning anatomy. The study aimed to cross-validate the AEEMI, which was previously studied in a public medical school, and proposed a valid universal model of AEEMI across public and private medical schools in Malaysia. METHODS: The initial 11-factor and 132-item AEEMI was distributed to 1930 pre-clinical and clinical year medical students from 11 medical schools in Malaysia. The study examined the construct validity of the AEEMI using exploratory and confirmatory factor analyses. RESULTS: The best-fit model of AEEMI was achieved using 5 factors and 26 items (χ 2 = 3300.71 (df = 1680), P < 0.001, χ 2/df = 1.965, Root Mean Square of Error Approximation (RMSEA) = 0.018, Goodness-of-fit Index (GFI) = 0.929, Comparative Fit Index (CFI) = 0.962, Normed Fit Index (NFI) = 0.927, Tucker-Lewis Index (TLI) = 0.956) with Cronbach's alpha values ranging from 0.621 to 0.927. Findings of the cross-validation across institutions and phases of medical training indicated that the AEEMI measures nearly the same constructs as the previously validated version with several modifications to the item placement within each factor. CONCLUSIONS: These results confirmed that variability exists within factors of the anatomy education environment among institutions. Hence, with modifications to the internal structure, the proposed model of the AEEMI can be considered universally applicable in the Malaysian context and thus can be used as one of the tools for auditing and benchmarking the anatomy curriculum.


Subject(s)
Schools, Medical , Factor Analysis, Statistical , Humans , Malaysia , Psychometrics , Reproducibility of Results , Surveys and Questionnaires
3.
Cytotechnology ; 71(6): 1121-1135, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31606844

ABSTRACT

This study evaluated the effects of Gelam honey (GH) on ex vivo corneal fibroblast ulcer model via wound healing assay, gene expression and immunocytochemistry. Corneal fibroblasts from New Zealand white rabbits were culture expanded. The corneal fibroblast wound healing capacity was observed by creating a circular wound onto confluent monolayer cells cultured in basal medium (BM), BM with GH, serum-enriched basal medium (BMS) and BMS with GH respectively. Wound healing assay and phenotypic characterization of the corneal fibroblast were performed at different stages of wound closure. Expression of aldehyde dehydrogenase (ALDH), vimentin, α-smooth muscle actin (α-SMA), lumican, collagen I and matrix metalloproteinase 12 (MMP 12) were measured at day 1, day 3 and complete wound closure day. Corneal fibroblast cultured in BMS with GH demonstrated the fastest wound closure, at day 5 post wounding. The gene expressions of ALDH and vimentin were higher than control groups while α-SMA expression was lower, in GH enriched media. The expressions of lumican, collagen I and MMP 12 were also higher in cells cultured in GH enriched media compared to the control groups. GH was shown to promote in vitro corneal fibroblast wound healing and may be a potential natural adjunct in the treatment of corneal wound.

4.
Wounds ; 29(11): 327-332, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28678731

ABSTRACT

OBJECTIVE: The aim of this study is to investigate the potential bene ts of Gelam honey (GH) in promoting proliferation of ex vivo cor- neal epithelial cells (CECs) and its effects on the phenotypical features. MATERIALS AND METHODS: Corneal epithelial cells were isolated from the corneas of rabbits (n = 6). The optimal dose of GH for CEC proliferation in both basal medium (BM) and cornea medium (CM) was determined via MTT (3-[4, 5-dimethyl thiazolyl-2]-2, 5-diphenyl tetrazolium bro- mide) assay. Morphology, gene and protein expressions, and cell cycle analysis of CECs were evaluated via phase contrast microscopy, real- time polymerase chain reaction, immunocytochemistry, and ow cytom- etry, respectively. RESULTS: Corneal epithelial cells cultured in 0.0015% GH-supplemented media (BM + 0.0015% GH; CM + 0.0015% GH) demonstrated optimal proliferative capacity with normal polygonal- shaped morphology. Gelam honey potentiates cytokeratin 3 (CK3) gene expression in accordance with the cytoplasmic CK3 protein expression while retaining normal cell cycle of CECs. CONCLUSION: Culture media treated with 0.0015% GH increased CEC proliferation while preserving its phenotypical features. This study demonstrated the potential devel- opment of GH-based topical treatment for super cial corneal injury.


Subject(s)
Epithelium, Corneal/drug effects , Honey , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Gene Expression/drug effects , Rabbits
5.
Curr Drug Targets ; 18(6): 734-750, 2017.
Article in English | MEDLINE | ID: mdl-27919208

ABSTRACT

Colorectal cancer (CRC) remains one of the major leading causes of cancer related morbidity and mortality. Apart from the conventional anti-neoplastic agents, metformin, a biguanide anti-diabetic agent, has recently found to have anti-cancer property. Several studies observed the effect of metformin towards its anti-cancer effect on colon or colorectal cancer in diabetic patients. However, only a few studies showed its effect on colorectal cancer in relation to the non-diabetic status. The present review aimed to highlight the insight into the molecular pathway of metformin towards colorectal cancer in the absence of diabetes mellitus. In CRC-independent of diabetes mellitus, highly deregulation of PI3K/AKT pathway is found which activates the downstream mammalian target of rapamycin (mTOR). Metformin inhibits cancer growth in colon by suppressing the colonic epithelial proliferation by inhibiting the mTOR pathway. Metformin exerts its anti-neoplastic effects by acting on tumour suppressor pathway via activating the adenosine monophosphate.activated protein kinase (AMPK) signaling pathway. Metformin interrupts the glucose metabolism by activating the AMPK. Metformin reduces tumour cell growth and metastasis by activating the p53 tumour suppressor gene. In addition to its therapeutic benefits, metformin is easily accessible, cost effective with better tolerance to the patients compared to the chemotherapeutic agents. This review summarised modern findings on the therapeutic applications of metformin on the colorectal cancer with no evidences of diabetes mellitus.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Metformin/pharmacology , TOR Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Cycle/drug effects , Cell Proliferation/drug effects , Clinical Trials as Topic , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Metformin/therapeutic use , Signal Transduction/drug effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...