Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 131079, 2024 May.
Article in English | MEDLINE | ID: mdl-38537860

ABSTRACT

This study investigates the effects of SCG embedded into biodegradable polymer blends and aimed to formulate and characterise biomass-reinforced biocomposites using spent coffee ground (SCG) as reinforcement in PHB/PLA polymer blend. The effect of SCG filler loading and varying PHB/PLA ratios on the tensile properties and morphological characteristics of the biocomposites were examined. The results indicated that tensile properties reduction could be due to its incompatibility with the PHB/PLA matrixSCG aggregation at 40 wt% content resulted in higher void formation compared to lower content at 10 wt%. A PHB/PLA ratio of 50/50 with SCG loading 20 wt% was chosen for biocomposites with treated SCG. Biological treatment of SCG using Phanerochaete chrysosporium CK01 and Aspergillus niger DWA8 indicated P. chrysosporium CK01 necessitated a higher moisture content for optimum growth and enzyme production, whereas the optimal conditions for enzyme production (50-55 %, w/w) differed from those promoting A. niger DWA8 growth (40 %, w/w). SEM micrographs highlighted uniform distribution and effective wetting of treated SCG, resulting in improvements of tensile strength and modulus of biocomposites, respectively. The study demonstrated the effectiveness of sustainable fungal treatment in enhancing the interfacial adhesion between treated SCG and the PHB/PLA matrix.


Subject(s)
Aspergillus niger , Coffee , Hydroxybutyrates , Polyesters , Polyesters/chemistry , Hydroxybutyrates/chemistry , Coffee/chemistry , Aspergillus niger/drug effects , Tensile Strength , Polymers/chemistry
2.
Polymers (Basel) ; 15(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36771999

ABSTRACT

Natural rubber latex (NRL) is normally transported to a destination in colloid/liquid form. It requires large storage containers such as drums and the probability of latex leakage during transportation is high. This is prevalent especially when transporting latex by sea. To prevent latex spillage, the liquid form of NRL is transformed into solid/frozen latex by freezing. However, the coagulation/destabilization of NRL by freezing has been acknowledged as a problem for years. Therefore, this study proposed a new low temperature stabilizer named azidated glycerol (AG) to be incorporated in NRL liquid before the freezing process. AG was prepared by a chemical reaction of pure glycerol with sodium azide. NRL containing AG was then frozen at a temperature of -4 °C. After 24 h of freezing, the frozen latex was thawed at ambient temperature for 1 h followed by heating in a water bath at 40 °C for another 1 h. The regenerated latex was then allowed to stand at room temperature before testing. The effect of AG on the colloid properties before and after the freeze-thaw processes was studied. The production of AG was confirmed by the appearance of a peak in the range of 2160-2120 cm-1, corresponding to N=N=N stretching, confirming the introduction of an azide group into the glycerol molecule. Modifying NRL with AG did not significantly influence the TSC of latex. Increasing the AG content up to 0.4 phr resulted in an increase in MST from 699 s to 828 s. An AG content of 0.2 phr resulted in the highest anionically stabilized latex as indicated by zeta potential values of -59.63 mV (before freezing) and -56.27 mV (after thawing). It is concluded that the AG produced in this study can be used as an anti-freeze stabilizer for NRL and is suitable for latex marine transportation.

SELECTION OF CITATIONS
SEARCH DETAIL
...