Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
2.
J Pathol ; 261(2): 139-155, 2023 10.
Article in English | MEDLINE | ID: mdl-37555362

ABSTRACT

Within the pancreas, Keratin 19 (KRT19) labels the ductal lineage and is a determinant of pancreatic ductal adenocarcinoma (PDAC). To investigate KRT19 expression dynamics, we developed a human pluripotent stem cell (PSC)-based KRT19-mCherry reporter system in different genetic backgrounds to monitor KRT19 expression from its endogenous gene locus. A differentiation protocol to generate mature pancreatic duct-like organoids was applied. While KRT19/mCherry expression became evident at the early endoderm stage, mCherry signal was present in nearly all cells at the pancreatic endoderm (PE) and pancreatic progenitor (PP) stages. Interestingly, despite homogenous KRT19 expression, mCherry positivity dropped to 50% after ductal maturation, indicating a permanent switch from biallelic to monoallelic expression. DNA methylation profiling separated the distinct differentiation intermediates, with site-specific DNA methylation patterns occurring at the KRT19 locus during ductal maturation. Accordingly, the monoallelic switch was partially reverted upon treatment with a DNA-methyltransferase inhibitor. In human PDAC cohorts, high KRT19 levels correlate with low locus methylation and decreased survival. At the same time, activation of oncogenic KRASG12D signalling in our reporter system reversed monoallelic back to biallelic KRT19 expression in pancreatic duct-like organoids. Allelic reactivation was also detected in single-cell transcriptomes of human PDACs, which further revealed a positive correlation between KRT19 and KRAS expression. Accordingly, KRAS mutant PDACs had higher KRT19 mRNA but lower KRT19 gene locus DNA methylation than wildtype counterparts. KRT19 protein was additionally detected in plasma of PDAC patients, with higher concentrations correlating with shorter progression-free survival in gemcitabine/nabPaclitaxel-treated and opposing trends in FOLFIRINOX-treated patients. Apart from being an important pancreatic ductal lineage marker, KRT19 appears tightly controlled via a switch from biallelic to monoallelic expression during ductal lineage entry and is aberrantly expressed after oncogenic KRASG12D expression, indicating a role in PDAC development and malignancy. Soluble KRT19 might serve as a relevant biomarker to stratify treatment. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols , Keratin-19/genetics , Keratin-19/metabolism , DNA Methylation , Proto-Oncogene Proteins p21(ras)/genetics , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/pathology , Gene Expression , Pancreatic Neoplasms
3.
Cancers (Basel) ; 15(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36612306

ABSTRACT

Here, we describe the expression of Bruton's Tyrosine Kinase (BTK) in head and neck squamous cell carcinoma (HNSCC) cell lines as well as in primary HNSCC samples. BTK is a kinase initially thought to be expressed exclusively in cells of hematopoietic origin. Apart from the 77 kDa BTK isoform expressed in immune cells, particularly in B cells, we identified the 80 kDa and 65 kDa BTK isoforms in HNSCC, recently described as oncogenic. Importantly, we revealed that both isoforms are products of the same mRNA. By investigating the mechanism regulating oncogenic BTK-p80/p65 expression in HNSSC versus healthy or benign tissues, our data suggests that the epigenetic process of methylation might be responsible for the initiation of BTK-p80/p65 expression in HNSCC. Our findings demonstrate that chemical or genetic abrogation of BTK activity leads to inhibition of tumor progression in terms of proliferation and vascularization in vitro and in vivo. These observations were associated with cell cycle arrest and increased apoptosis and autophagy. Together, these data indicate BTK-p80 and BTK-p65 as novel HNSCC-associated oncogenes. Owing to the fact that abundant BTK expression is a characteristic feature of primary and metastatic HNSCC, targeting BTK activity appears as a promising therapeutic option for HNSCC patients.

4.
Cells ; 11(3)2022 02 08.
Article in English | MEDLINE | ID: mdl-35159392

ABSTRACT

Human pluripotent stem cells, with their ability to proliferate indefinitely and to differentiate into virtually all cell types of the human body, provide a novel resource to study human development and to implement relevant disease models. Here, we employed a human pancreatic differentiation platform complemented with an shRNA screen in human pluripotent stem cells (PSCs) to identify potential drivers of early endoderm and pancreatic development. Deep sequencing followed by abundancy ranking pinpointed six top hit genes potentially associated with either improved or impaired endodermal differentiation, which were selected for functional validation in CRISPR-Cas9 mediated knockout (KO) lines. Upon endoderm differentiation (DE), particularly the loss of SLC22A1 and DSC2 led to impaired differentiation efficiency into CXCR4/KIT-positive DE cells. qPCR analysis also revealed changes in differentiation markers CXCR4, FOXA2, SOX17, and GATA6. Further differentiation of PSCs to the pancreatic progenitor (PP) stage resulted in a decreased proportion of PDX1/NKX6-1-positive cells in SLC22A1 KO lines, and in DSC2 KO lines when differentiated under specific culture conditions. Taken together, our study reveals novel genes with potential roles in early endodermal development.


Subject(s)
Endoderm , Pluripotent Stem Cells , Cell Differentiation/genetics , Genomics , Humans , Pancreas/metabolism , Pluripotent Stem Cells/metabolism
5.
Adv Healthc Mater ; 11(11): e2102345, 2022 06.
Article in English | MEDLINE | ID: mdl-35114730

ABSTRACT

Despite intensive research and progress in personalized medicine, pancreatic ductal adenocarcinoma remains one of the deadliest cancer entities. Pancreatic duct-like organoids (PDLOs) derived from human pluripotent stem cells (PSCs) or pancreatic cancer patient-derived organoids (PDOs) provide unique tools to study early and late stage dysplasia and to foster personalized medicine. However, such advanced systems are neither rapidly nor easily accessible and require an in vivo niche to study tumor formation and interaction with the stroma. Here, the establishment of the porcine urinary bladder (PUB) is revealed as an advanced organ culture model for shaping an ex vivo pancreatic niche. This model allows pancreatic progenitor cells to enter the ductal and endocrine lineages, while PDLOs further mature into duct-like tissue. Accordingly, the PUB offers an ex vivo platform for earliest pancreatic dysplasia and cancer if PDLOs feature KRASG12D mutations. Finally, it is demonstrated that PDOs-on-PUB i) resemble primary pancreatic cancer, ii) preserve cancer subtypes, iii) enable the study of niche epithelial crosstalk by spiking in pancreatic stellate and immune cells into the grafts, and finally iv) allow drug testing. In summary, the PUB advances the existing pancreatic cancer models by adding feasibility, complexity, and customization at low cost and high flexibility.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pluripotent Stem Cells , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Humans , Organoids/pathology , Pancreatic Neoplasms/pathology , Swine , Urinary Bladder , Pancreatic Neoplasms
6.
Cancers (Basel) ; 13(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34680288

ABSTRACT

Patient-derived induced pluripotent stem cells (iPSCs) provide a unique platform to study hereditary disorders and predisposition syndromes by resembling germline mutations of affected individuals and by their potential to differentiate into nearly every cell type of the human body. We employed plucked human hair from two siblings with a family history of cancer carrying a pathogenic CDKN2A variant, P16-p.G101W/P14-p.R115L, to generate patient-specific iPSCs in a cancer-prone ancestry for downstream analytics. The differentiation capacity to pancreatic progenitors and to pancreatic duct-like organoids (PDLOs) according to a recently developed protocol remained unaffected. Upon inducible expression of KRASG12Dusing a piggyBac transposon system in CDKN2A-mutated PDLOs, we revealed structural and molecular changes in vitro, including disturbed polarity and epithelial-to-mesenchymal (EMT) transition. CDKN2A-mutated KRASG12DPDLO xenotransplants formed either a high-grade precancer lesion or a partially dedifferentiated PDAC-like tumor. Intriguingly, P14/P53/P21 and P16/RB cell-cycle checkpoint controls have been only partly overcome in these grafts, thereby still restricting the tumorous growth. Hereby, we provide a model for hereditary human pancreatic cancer that enables dissection of tumor initiation and early development starting from patient-specific CDKN2A-mutated pluripotent stem cells.

7.
Cancers (Basel) ; 13(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201898

ABSTRACT

To assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (NANOG, OCT3/4, SOX2, KLF4) and telomerase, which is essential for the self-renewal of CSCs. Disruption of the balance between telomerase activity and stemness factors eliminates CSCs via induction of DNA damage and apoptosis in primary patient-derived pancreatic cancer samples, opening future perspectives to avoid CSC-driven tumor relapse. In the present study, we demonstrate that telomerase regulation is critical for the "stemness" maintenance in pancreatic CSCs and examine the effects of telomerase inhibition as a potential treatment option of pancreatic cancer. This may significantly promote our understanding of PDAC tumor biology and may result in improved treatment for pancreatic cancer patients.

8.
Adv Sci (Weinh) ; 8(14): 2100626, 2021 07.
Article in English | MEDLINE | ID: mdl-34306986

ABSTRACT

Somatic cell reprogramming and tissue repair share relevant factors and molecular programs. Here, Dickkopf-3 (DKK3) is identified as novel factor for organ regeneration using combined transcription-factor-induced reprogramming and RNA-interference techniques. Loss of Dkk3 enhances the generation of induced pluripotent stem cells but does not affect de novo derivation of embryonic stem cells, three-germ-layer differentiation or colony formation capacity of liver and pancreatic organoids. However, DKK3 expression levels in wildtype animals and serum levels in human patients are elevated upon injury. Accordingly, Dkk3-null mice display less liver damage upon acute and chronic failure mediated by increased proliferation in hepatocytes and LGR5+ liver progenitor cell population, respectively. Similarly, recovery from experimental pancreatitis is accelerated. Regeneration onset occurs in the acinar compartment accompanied by virtually abolished canonical-Wnt-signaling in Dkk3-null animals. This results in reduced expression of the Hedgehog repressor Gli3 and increased Hedgehog-signaling activity upon Dkk3 loss. Collectively, these data reveal Dkk3 as a key regulator of organ regeneration via a direct, previously unacknowledged link between DKK3, canonical-Wnt-, and Hedgehog-signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Genomics/methods , Organogenesis/genetics , Organogenesis/physiology , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Regeneration/genetics , Regeneration/physiology
9.
Front Endocrinol (Lausanne) ; 12: 648284, 2021.
Article in English | MEDLINE | ID: mdl-34079523

ABSTRACT

Diabetes, as one of the major diseases in industrial countries, affects over 350 million people worldwide. Type 1 (T1D) and type 2 diabetes (T2D) are the most common forms with both types having invariable genetic influence. It is accepted that a subset of all diabetes patients, generally estimated to account for 1-2% of all diabetic cases, is attributed to mutations in single genes. As only a subset of these genes has been identified and fully characterized, there is a dramatic need to understand the pathophysiological impact of genetic determinants on ß-cell function and pancreatic development but also on cell replacement therapies. Pluripotent stem cells differentiated along the pancreatic lineage provide a valuable research platform to study such genes. This review summarizes current perspectives in applying this platform to study monogenic diabetes variants.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Mutation , Pluripotent Stem Cells/cytology , Animals , CRISPR-Cas Systems , Cell Differentiation , Cell Lineage , Embryonic Stem Cells/cytology , Epigenesis, Genetic , Gene Editing , Genetic Variation , Heterozygote , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Mice , Mice, Knockout , Pancreas/embryology , Pancreas/pathology , Phenotype , Regeneration
10.
Cell Stem Cell ; 28(6): 1105-1124.e19, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33915078

ABSTRACT

Personalized in vitro models for dysplasia and carcinogenesis in the pancreas have been constrained by insufficient differentiation of human pluripotent stem cells (hPSCs) into the exocrine pancreatic lineage. Here, we differentiate hPSCs into pancreatic duct-like organoids (PDLOs) with morphological, transcriptional, proteomic, and functional characteristics of human pancreatic ducts, further maturing upon transplantation into mice. PDLOs are generated from hPSCs inducibly expressing oncogenic GNAS, KRAS, or KRAS with genetic covariance of lost CDKN2A and from induced hPSCs derived from a McCune-Albright patient. Each oncogene causes a specific growth, structural, and molecular phenotype in vitro. While transplanted PDLOs with oncogenic KRAS alone form heterogenous dysplastic lesions or cancer, KRAS with CDKN2A loss develop dedifferentiated pancreatic ductal adenocarcinomas. In contrast, transplanted PDLOs with mutant GNAS lead to intraductal papillary mucinous neoplasia-like structures. Conclusively, PDLOs enable in vitro and in vivo studies of pancreatic plasticity, dysplasia, and cancer formation from a genetically defined background.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pluripotent Stem Cells , Animals , Humans , Mice , Mutation , Organoids , Pancreatic Ducts , Pancreatic Neoplasms/genetics , Proteomics
11.
Cancer Res ; 81(7): 1758-1774, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33531371

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) still presents with a dismal prognosis despite intense research. Better understanding of cellular homeostasis could identify druggable targets to improve therapy. Here we propose RAD50-interacting protein 1 (RINT1) as an essential mediator of cellular homeostasis in PDAC. In a cohort of resected PDAC, low RINT1 protein expression correlated significantly with better survival. Accordingly, RINT1 depletion caused severe growth defects in vitro associated with accumulation of DNA double-strand breaks (DSB), G2 cell cycle arrest, disruption of Golgi-endoplasmic reticulum homeostasis, and cell death. Time-resolved transcriptomics corroborated by quantitative proteome and interactome analyses pointed toward defective SUMOylation after RINT1 loss, impairing nucleocytoplasmic transport and DSB response. Subcutaneous xenografts confirmed tumor response by RINT1 depletion, also resulting in a survival benefit when transferred to an orthotopic model. Primary human PDAC organoids licensed RINT1 relevance for cell viability. Taken together, our data indicate that RINT1 loss affects PDAC cell fate by disturbing SUMOylation pathways. Therefore, a RINT1 interference strategy may represent a new putative therapeutic approach. SIGNIFICANCE: These findings provide new insights into the aggressive behavior of PDAC, showing that RINT1 directly correlates with survival in patients with PDAC by disturbing the SUMOylation process, a crucial modification in carcinogenesis.


Subject(s)
Carcinoma, Pancreatic Ductal , Cell Cycle Proteins/physiology , DNA Repair/genetics , Pancreatic Neoplasms , Sumoylation , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cohort Studies , DNA Damage/genetics , Female , Homeostasis/genetics , Humans , Mice , Mice, Nude , Mice, Transgenic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Processing, Post-Translational/genetics , Sumoylation/genetics
12.
Stem Cells Int ; 2021: 8847804, 2021.
Article in English | MEDLINE | ID: mdl-33505475

ABSTRACT

Enteric infections represent a major health care challenge which is particularly prevalent in countries with restricted access to clean water and sanitation and lacking personal hygiene precautions, altogether facilitating fecal-oral transmission of a heterogeneous spectrum of enteropathogenic microorganisms. Among these, bacterial species are responsible for a considerable proportion of illnesses, hospitalizations, and fatal cases, all of which have been continuously contributing to ignite researchers' interest in further exploring their individual pathogenicity. Beyond the universally accepted animal models, intestinal organoids are increasingly valued for their ability to mimic key architectural and physiologic features of the native intestinal mucosa. As a consequence, they are regarded as the most versatile and naturalistic in vitro model of the gut, allowing monitoring of adherence, invasion, intracellular trafficking, and propagation as well as repurposing components of the host cell equipment. At the same time, infected intestinal organoids allow close characterization of the host epithelium's immune response to enteropathogens. In this review, (i) we provide a profound update on intestinal organoid-based tissue engineering, (ii) we report the latest pathophysiological findings defining the infected intestinal organoids, and (iii) we discuss the advantages and limitations of this in vitro model.

13.
Gut ; 70(4): 743-760, 2021 04.
Article in English | MEDLINE | ID: mdl-32873698

ABSTRACT

OBJECTIVE: ATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC). DESIGN: Combinational synergy screening was performed to endeavour a genotype-tailored targeted therapy. RESULTS: Synergy was found on inhibition of PARP, ATR and DNA-PKcs (PAD) leading to synthetic lethality in ATM-deficient murine and human PDAC. Mechanistically, PAD-induced PARP trapping, replication fork stalling and mitosis defects leading to P53-mediated apoptosis. Most importantly, chemical inhibition of ATM sensitises human PDAC cells toward PAD with long-term tumour control in vivo. Finally, we anticipated and elucidated PARP inhibitor resistance within the ATM-null background via whole exome sequencing. Arising cells were aneuploid, underwent epithelial-mesenchymal-transition and acquired multidrug resistance (MDR) due to upregulation of drug transporters and a bypass within the DNA repair machinery. These functional observations were mirrored in copy number variations affecting a region on chromosome 5 comprising several of the upregulated MDR genes. Using these findings, we ultimately propose alternative strategies to overcome the resistance. CONCLUSION: Analysis of the molecular susceptibilities triggered by ATM deficiency in PDAC allow elaboration of an efficient mutation-specific combinational therapeutic approach that can be also implemented in a genotype-independent manner by ATM inhibition.


Subject(s)
Adenocarcinoma/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Carcinoma, Pancreatic Ductal/genetics , Homologous Recombination , Pancreatic Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Adenocarcinoma/drug therapy , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Cell Survival , DNA Copy Number Variations , DNA Damage , DNA Repair , Drug Resistance, Multiple/genetics , Drug Synergism , Epithelial-Mesenchymal Transition , Genotype , Humans , Mice , Pancreatic Neoplasms/drug therapy , Prognosis
14.
Int J Mol Sci ; 21(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397303

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Different factors such as mutational landscape, intra- and intertumoral heterogeneity, stroma, and immune cells impact carcinogenesis of PDAC associated with an immunosuppressive microenvironment. Different cell types with partly opposing roles contribute to this milieu. In recent years, immunotherapeutic approaches, including checkpoint inhibitors, were favored to treat cancers, albeit not every cancer entity exhibited benefits in a similar way. Indeed, immunotherapies rendered little success in pancreatic cancer. In this review, we describe the communication between the immune system and pancreatic cancer cells and propose some rationale why immunotherapies may fail in the context of pancreatic cancer. Moreover, we delineate putative strategies to sensitize PDAC towards immunological therapeutics and highlight the potential of targeting neoantigens.


Subject(s)
Carcinoma, Pancreatic Ductal/immunology , Immunotherapy/methods , Pancreatic Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , B-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/therapy , Humans , Killer Cells, Natural/immunology , Macrophages/immunology , Mast Cells/immunology , Neutrophils/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/therapy , Prognosis
15.
Carcinogenesis ; 41(10): 1421-1431, 2020 10 15.
Article in English | MEDLINE | ID: mdl-31917403

ABSTRACT

The repurposing of existing drugs has emerged as an attractive additional strategy to the development of novel compounds in the fight against cancerous diseases. Inhibition of phosphodiesterase 5 (PDE5) has been claimed as a potential approach to target various cancer subtypes in recent years. However, data on the treatment of tumors with PDE5 inhibitors as well as the underlying mechanisms are as yet very scarce. Here, we report that treatment of tumor cells with low concentrations of Sildenafil was associated with decreased cancer cell proliferation and augmented apoptosis in vitro and resulted in impaired tumor growth in vivo. Notably, incubation of cancer cells with Sildenafil was associated with altered expression of HSP90 chaperone followed by degradation of protein kinase D2, a client protein previously reported to be involved in tumor growth. Furthermore, the involvement of low doses of PU-H71, an HSP90 inhibitor currently under clinical evaluation, in combination with low concentrations of Sildenafil, synergistically and negatively impacted on the viability of cancer cells in vivo. Taken together, our study suggests that repurposing of already approved drugs, alone or in combination with oncology-dedicated compounds, may represent a novel cancer therapeutic strategy.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Neoplasms/pathology , Phosphodiesterase 5 Inhibitors/pharmacology , Proteolysis , Sildenafil Citrate/pharmacology , TRPP Cation Channels/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Humans , Neoplasms/metabolism
16.
Int J Cancer ; 147(1): 202-217, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31846065

ABSTRACT

Adenosine is a signaling molecule that exerts dual effects on tumor growth: while it inhibits immune cell function and thereby prevents surveillance by the immune system, it influences tumorigenesis directly via activation of adenosine receptors on tumor cells at the same time. However, the adenosine-mediated mechanisms affecting oncogenic processes particularly in head and neck squamous cell carcinomas (HNSCC) are not fully understood. Here, we investigated the role of adenosine receptor activity on HNSCC-derived cell lines. Targeting the adenosine receptor A2B (ADORA2B) on these cells with the inverse agonist/antagonist PSB-603 leads to inhibition of cell proliferation, transmigration as well as VEGFA secretion in vitro. At the molecular level, these effects were associated with cell cycle arrest as well as the induction of the apoptotic pathway. In addition, shRNA-mediated downmodulation of ADORA2B expression caused decreased proliferation. Moreover, in in vivo xenograft experiments, chemical and genetic abrogation of ADORA2B activity impaired tumor growth associated with decreased tumor vascularization. Together, our findings characterize ADORA2B as a crucial player in the maintenance of HNSCC and, therefore, as a potential therapeutic target for HNSCC treatment.


Subject(s)
Head and Neck Neoplasms/metabolism , Receptor, Adenosine A2B/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , 5'-Nucleotidase/biosynthesis , 5'-Nucleotidase/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Chick Embryo , Chorioallantoic Membrane/metabolism , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/metabolism , Head and Neck Neoplasms/blood supply , Head and Neck Neoplasms/pathology , Humans , Jurkat Cells , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Receptor, Adenosine A2B/biosynthesis , Squamous Cell Carcinoma of Head and Neck/blood supply , Squamous Cell Carcinoma of Head and Neck/pathology , Sulfonamides/pharmacology , Xanthines/pharmacology
17.
Int J Cancer ; 145(11): 2996-3010, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31008532

ABSTRACT

Next-generation sequencing has become a cornerstone of therapy guidance in cancer precision medicine and an indispensable research tool in translational oncology. Its rapidly increasing use during the last decade has expanded the options for targeted tumor therapies, and molecular tumor boards have grown accordingly. However, with increasing detection of genetic alterations, their interpretation has become more complex and error-prone, potentially introducing biases and reducing benefits in clinical practice. To facilitate interdisciplinary discussions of genetic alterations for treatment stratification between pathologists, oncologists, bioinformaticians, genetic counselors and medical scientists in specialized molecular tumor boards, several systems for the classification of variants detected by large-scale sequencing have been proposed. We review three recent and commonly applied classifications and discuss their individual strengths and weaknesses. Comparison of the classifications underlines the need for a clinically useful and universally applicable variant reporting system, which will be instrumental for efficient decision making based on sequencing analysis in oncology. Integrating these data, we propose a generalizable classification concept featuring a conservative and a more progressive scheme, which can be readily applied in a clinical setting.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Humans , Molecular Targeted Therapy , Mutation , Neoplasms/drug therapy , Precision Medicine , Sequence Analysis, DNA
18.
EMBO Mol Med ; 11(5)2019 05.
Article in English | MEDLINE | ID: mdl-30898787

ABSTRACT

Myxoid liposarcomas (MLS), malignant tumors of adipocyte origin, are driven by the FUS-DDIT3 fusion gene encoding an aberrant transcription factor. The mechanisms whereby FUS-DDIT3 mediates sarcomagenesis are incompletely understood, and strategies to selectively target MLS cells remain elusive. Here we show, using an unbiased functional genomic approach, that FUS-DDIT3-expressing mesenchymal stem cells and MLS cell lines are dependent on YAP1, a transcriptional co-activator and central effector of the Hippo pathway involved in tissue growth and tumorigenesis, and that increased YAP1 activity is a hallmark of human MLS Mechanistically, FUS-DDIT3 promotes YAP1 expression, nuclear localization, and transcriptional activity and physically associates with YAP1 in the nucleus of MLS cells. Pharmacologic inhibition of YAP1 activity impairs the growth of MLS cells in vitro and in vivo These findings identify overactive YAP1 signaling as unifying feature of MLS development that could represent a novel target for therapeutic intervention.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Liposarcoma, Myxoid/metabolism , Signal Transduction , Transcription Factors/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Chickens , HEK293 Cells , Humans , Inhibitory Concentration 50 , Liposarcoma, Myxoid/pathology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mitosis/drug effects , RNA Interference , RNA-Binding Protein FUS/metabolism , Signal Transduction/drug effects , Transcription Factor CHOP/metabolism , Verteporfin/pharmacology , Xenograft Model Antitumor Assays , YAP-Signaling Proteins
19.
Sci Rep ; 9(1): 4112, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858416

ABSTRACT

HSP90 is a ubiquitously expressed molecular chaperone implicated in the correct folding and maturation of a plethora of proteins including protein kinases and transcription factors. While disruption of chaperone activity was associated with augmented cancer cell death and decreased tumor growth both in vitro and in vivo, the regulation of HSP90 is not clearly understood. Here we report that treatment of cancer cells with cold physical plasma, an emerging and less aggressive tumor therapy, resulted in ROS generation which subsequently triggered the cleavage of HSP90. Notably, cleavage of HSP90 was followed by the degradation of PKD2, a crucial regulator of tumor growth and angiogenesis. Pre-sensitization of cancer cells with subliminal doses of PU-H71, an HSP90 inhibitor currently under clinical evaluation, followed by treatment with cold-plasma, synergistically and negatively impacted on the viability of cancer cells. Taken together, cold-plasma can be used in conjunction with pharmacologic treatment in order to target the expression and activity of HSP90 and the downstream client proteins implicated in various cancer cell capabilities.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Neoplasms/pathology , Plasma Gases/pharmacology , Reactive Oxygen Species/metabolism , Argon/pharmacology , Atmospheric Pressure , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Models, Biological , Protein Kinase D2 , Protein Kinases/metabolism , Proteolysis/drug effects
20.
J Clin Invest ; 128(11): 5056-5072, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30320600

ABSTRACT

Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.


Subject(s)
Fetal Proteins/metabolism , Inflammatory Bowel Diseases/enzymology , Intestines/enzymology , Multiple Organ Failure/enzymology , Multiple Trauma/enzymology , Protein-Tyrosine Kinases/metabolism , Systemic Inflammatory Response Syndrome/enzymology , Animals , Disease Models, Animal , Female , Fetal Proteins/genetics , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Interleukin-6/genetics , Interleukin-6/metabolism , Intestines/pathology , Mice , Multiple Organ Failure/etiology , Multiple Organ Failure/genetics , Multiple Organ Failure/pathology , Multiple Trauma/complications , Multiple Trauma/genetics , Multiple Trauma/pathology , Protein-Tyrosine Kinases/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Swine , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/pathology , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...