Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Toxics ; 12(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38668493

ABSTRACT

Biomonitoring of human populations exposed to chemical substances that can act as potential mutagens or carcinogens, may enable the detection of damage and early disease prevention. In recent years, the comet assay has become an important tool for assessing DNA damage, both in environmental and occupational exposure contexts. To evidence the role of the comet assay in human biomonitoring, we have analysed original research studies of environmental or occupational exposure that used the comet assay in their assessments, following the PRISMA-ScR method (preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of chemicals were designated according to a broad classification, and the results obtained from over 300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs, n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA damage in human biomonitoring studies.

3.
Toxicology ; 501: 153690, 2024 01.
Article in English | MEDLINE | ID: mdl-38040084

ABSTRACT

DNA damage plays a pivotal role in carcinogenesis and other diseases. The comet assay has been used for more than three decades to measure DNA damages. The 1-2 gels/slide format is the most used version of the assay. In 2010, a high throughput 96 macrowell format with a spatially encoded array of microwells patterned in agarose was developed, called the CometChip. The commercial version (CometChip®) has been used for the in vitro standard version of the comet assay (following the manufacturer's protocol), although it has not been compared directly with the 2 gels/slide format. The aim of this work is to developed new protocols to allow use of DNA repair enzymes as well as the analysis of in vivo frozen tissue samples in the CometChip®, to increase the throughput, and to compare its performance with the classic 2 gels/slide format. We adapted the manufacturer's protocol to allow the use of snap frozen tissue samples, using male Wistar rats orally dosed with methyl methanesulfonate (MMS, 200 mg/kg b.w.), and to detect altered nucleobases using DNA repair enzymes, with TK6 cells treated with potassium bromate (KBrO3, 0-4 mM, 3 h) and formamidopyrimidine DNA glycosylase (Fpg) as the enzyme. Regarding the standard version of the comet, we performed thee comparison of the 2 gel/slide and CometChip® format (using the the manufacturer's protocol), using TK6 cells with MMS (100-800 µM, 1 h) and hydrogen peroxide (H2O2, 7.7-122.5 µM, 5 min) as testing compounds. In all cases the CometChip® was performed along with the 2 gels/slide format. Results obtained were comparable and the CometChip® is a good alternative to the 2 gels/slide format when a higher throughput is required.


Subject(s)
DNA Damage , DNA Repair Enzymes , Male , Animals , Rats , Comet Assay/methods , Rats, Wistar , Gels
4.
J Neuroimmune Pharmacol ; 18(3): 529-550, 2023 09.
Article in English | MEDLINE | ID: mdl-37698780

ABSTRACT

Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment. In this study, we demonstrate that the specific SIRT2 inhibitor, the compound 33i, does not exhibit genotoxic or mutagenic properties. Moreover, pharmacological treatment with 33i, improved cognitive dysfunction and long-term potentiation, reducing amyloid pathology and neuroinflammation in the APP/PS1 AD mouse model. However, this treatment increased peripheral levels of the inflammatory cytokines IL-1ß, TNF, IL-6 and MCP-1. Accordingly, peripheral SIRT2 inhibition with the blood brain barrier impermeable compound AGK-2, worsened the cognitive capacities and increased systemic inflammation. The analysis of human samples revealed that SIRT2 is increased in the brain but not in the serum of AD patients. These results suggest that, although SIRT2 pharmacological inhibition may have beneficial consequences in neurodegenerative diseases, its pharmacological inhibition at the periphery would not be recommended and the systemic adverse side effects should be considered. This information is essential to maximize the therapeutic potential of SIRT2 inhibition not only for AD but also for other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Sirtuin 2 , Animals , Humans , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Disease Models, Animal , Inflammation/chemically induced , Inflammation/pathology , Mice, Transgenic , Sirtuin 2/antagonists & inhibitors , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology
5.
Toxins (Basel) ; 15(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37624248

ABSTRACT

Mycotoxins are natural food and feed contaminants produced by several molds. The primary mode of exposure in humans and animals is through mixtures. Aflatoxin B1 (AFB1) and sterigmatocystin (STER) are structurally related mycotoxins that share the same biosynthetic route. Few in vivo genotoxicity assays have been performed with STER. In the present genotoxicity study, Wistar rats were dosed orally with STER (20 mg/kg b.w.), AFB1 (0.25 mg/kg b.w.) or a mixture of both in an integrated micronucleus (bone marrow) and comet study (liver and kidney). STER was dosed at the highest feasible dose in corn oil. No increase in the percentage of micronuclei in bone marrow was observed at any condition. Slight DNA damage was detected in the livers of animals treated with AFB1 or the mixture (DNA strand breaks and Fpg (Formamidopyrimidine DNA glycosylase)-sensitive sites, respectively). Plasma, liver, and kidney samples were analyzed with LC-MS/MS demonstrating exposure to both mycotoxins. General toxicity parameters (organs absolute weight, biochemistry, and histopathology) were not altered either individually or in the mixture. The overall absence of individual genotoxicity did not allow us to set any type of interaction in the mixture. However, a possible toxicokinetic interaction was observed.


Subject(s)
Aflatoxin B1 , Sterigmatocystin , Rats , Animals , Humans , Rats, Wistar , Sterigmatocystin/toxicity , Aflatoxin B1/toxicity , Chromatography, Liquid , Tandem Mass Spectrometry , DNA Damage
6.
Environ Pollut ; 335: 122276, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37517643

ABSTRACT

Aflatoxin B1 (AFB1) is the most potent natural carcinogen among mycotoxins. Versicolorin A (VerA) is a precursor of AFB1 biosynthesis and is structurally related to the latter. Although VerA has already been identified as a genotoxin, data on the toxicity of VerA are still scarce, especially at low concentrations. The SOS/umu and miniaturised version of the Ames test in Salmonella Typhimurium strains used in the present study shows that VerA induces point mutations. This effect, like AFB1, depends primarily on metabolic activation of VerA. VerA also induced chromosomal damage in metabolically competent intestinal cells (IPEC-1) detected by the micronucleus assay. Furthermore, results from the standard and enzyme-modified comet assay confirmed the VerA-mediated DNA damage, and we observed that DNA repair pathways were activated upon exposure to VerA, as indicated by the phosphorylation and/or relocation of relevant DNA-repair biomarkers (γH2AX and 53BP1/FANCD2, respectively). In conclusion, VerA induces DNA damage without affecting cell viability at concentrations as low as 0.03 µM, highlighting the danger associated with VerA exposure and calling for more research on the carcinogenicity of this emerging food contaminant.


Subject(s)
Mycotoxins , Mycotoxins/toxicity , Aflatoxin B1/toxicity , Mutagens/toxicity , DNA Damage , Mutagenicity Tests/methods
7.
Front Toxicol ; 5: 1220998, 2023.
Article in English | MEDLINE | ID: mdl-37492623

ABSTRACT

Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.

8.
Foods ; 12(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37297430

ABSTRACT

The oxidative stability and genotoxicity of coconut, rapeseed and grape seed oils were evaluated. Samples were submitted to different treatments: 10 days at 65 °C, 20 days at 65 °C (accelerated storage) and 90 min at 180 °C. Peroxide values and thiobarbituric acid reactive substances values were altered as a function of storage time, but their greatest changes were recorded in samples subjected to 180 °C. Fatty acid profiles did not show significant changes from the nutritional point of view. Volatile compounds showed the highest increases at 180 °C for 90 min (18, 30 and 35 fold the amount in unheated samples in rapeseed, grape seed and coconut oils, respectively), particularly due to the increment in aldehydes. This family accounted for 60, 82 and 90% of the total area in coconut, rapeseed and grapeseed oil, respectively, with cooking. Mutagenicity was not detected in any case in a miniaturized version of the Ames test using TA97a and TA98 Salmonella typhimurium strains. Despite the increment in the presence of lipid oxidation compounds in the three oils, they were not compromised from the safety perspective.

9.
Mutagenesis ; 38(5): 273-282, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37357800

ABSTRACT

The comet assay is widely used in biomonitoring studies for the analysis of DNA damage in leukocytes and peripheral blood mononuclear cells. Rather than processing blood samples directly, it can be desirable to cryopreserve whole blood or isolated cells for later analysis by the comet assay. However, this creates concern about artificial accumulation of DNA damage during cryopreservation. In this study, 10 laboratories used standardized cryopreservation and thawing procedures of monocytic (THP-1) or lymphocytic (TK6) cells. Samples were cryopreserved in small aliquots in 50% foetal bovine serum, 40% cell culture medium, and 10% dimethyl sulphoxide. Subsequently, cryopreserved samples were analysed by the standard comet assay on three occasions over a 3-year period. Levels of DNA strand breaks in THP-1 cells were increased (four laboratories), unaltered (four laboratories), or decreased (two laboratories) by long-term storage. Pooled analysis indicates only a modest positive association between storage time and levels of DNA strand breaks in THP-1 cells (0.37% Tail DNA per year, 95% confidence interval: -0.05, 0.78). In contrast, DNA strand break levels were not increased by cryopreservation in TK6 cells. There was inter-laboratory variation in levels of DNA strand breaks in THP-1 cells (SD = 3.7% Tail DNA) and TK6 reference sample cells (SD = 9.4% Tail DNA), whereas the intra-laboratory residual variation was substantially smaller (i.e. SD = 0.4%-2.2% Tail DNA in laboratories with the smallest and largest variation). In conclusion, the study shows that accumulation of DNA strand breaks in cryopreserved mononuclear blood cell lines is not a matter of concern.


Subject(s)
DNA Damage , Leukocytes, Mononuclear , Comet Assay/methods , Leukocytes, Mononuclear/metabolism , Cryopreservation/methods , DNA/metabolism
10.
Mutagenesis ; 38(5): 264-272, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37357815

ABSTRACT

The formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay is widely used for the measurement of oxidatively generated damage to DNA. However, there has not been a recommended long-term positive control for this version of the comet assay. We have investigated potassium bromate as a positive control for the Fpg-modified comet assay because it generates many Fpg-sensitive sites with a little concurrent generation of DNA strand breaks. Eight laboratories used the same procedure for the treatment of monocytic THP-1 cells with potassium bromate (0, 0.5, 1.5, and 4.5 mM) and subsequent cryopreservation in a freezing medium consisting of 50% foetal bovine serum, 40% RPMI-1640 medium, and 10% dimethyl sulphoxide. The samples were analysed by the Fpg-modified comet assay three times over a 3-year period. All laboratories obtained a positive concentration-response relationship in cryopreserved samples (linear regression coefficients ranging from 0.79 to 0.99). However, there was a wide difference in the levels of Fpg-sensitive sites between the laboratory with the lowest (4.2% Tail DNA) and highest (74% Tail DNA) values in THP-1 cells after exposure to 4.5 mM KBrO3. In an attempt to assess sources of inter-laboratory variation in Fpg-sensitive sites, comet images from one experiment in each laboratory were forwarded to a central laboratory for visual scoring. There was high consistency between measurements of %Tail DNA values in each laboratory and the visual score of the same comets done in the central laboratory (r = 0.98, P < 0.001, linear regression). In conclusion, the results show that potassium bromate is a suitable positive comet assay control.

11.
Mutagenesis ; 38(5): 253-263, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37233347

ABSTRACT

Measurement of DNA migration in the comet assay can be done by image analysis or visual scoring. The latter accounts for 20%-25% of the published comet assay results. Here we assess the intra- and inter-investigator variability in visual scoring of comets. We include three training sets of comet images, which can be used as reference for researchers who wish to use visual scoring of comets. Investigators in 11 different laboratories scored the comet images using a five-class scoring system. There is inter-investigator variation in the three training sets of comets (i.e. coefficient of variation (CV) = 9.7%, 19.8%, and 15.2% in training sets I-III, respectively). However, there is also a positive correlation of inter-investigator scoring in the three training sets (r = 0.60). Overall, 36% of the variation is attributed to inter-investigator variation and 64% stems from intra-investigator variation in scoring between comets (i.e. the comets in training sets I-III look slightly different and this gives rise to heterogeneity in scoring). Intra-investigator variation in scoring was also assessed by repeated analysis of the training sets by the same investigator. There was larger variation when the training sets were scored over a period of six months (CV = 5.9%-9.6%) as compared to 1 week (CV = 1.3%-6.1%). A subsequent study revealed a high inter-investigator variation when premade slides, prepared in a central laboratory, were stained and scored by investigators in different laboratories (CV = 105% and 18%-20% in premade slides with comets from unexposed and hydrogen peroxide-exposed cells, respectively). The results indicate that further standardization of visual scoring is desirable. Nevertheless, the analysis demonstrates that visual scoring is a reliable way of analysing DNA migration in comets.

12.
Mutagenesis ; 38(5): 283-294, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37228081

ABSTRACT

The comet assay is a simple and versatile method for measurement of DNA damage in eukaryotic cells. More specifically, the assay detects DNA migration from agarose gel-embedded nucleoids, which depends on assay conditions and the level of DNA damage. Certain steps in the comet assay procedure have substantial impact on the magnitude of DNA migration (e.g. electric potential and time of electrophoresis). Inter-laboratory variation in DNA migration levels occurs because there is no agreement on optimal assay conditions or suitable assay controls. The purpose of the hCOMET ring trial was to test potassium bromate (KBrO3) as a positive control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. To this end, participating laboratories used semi-standardized protocols for cell culture (i.e. cell culture, KBrO3 exposure, and cryopreservation of cells) and comet assay procedures, whereas the data acquisition was not standardized (i.e. staining of comets and image analysis). Segregation of the total variation into partial standard deviation (SD) in % Tail DNA units indicates the importance of cell culture procedures (SD = 10.9), comet assay procedures (SD = 12.3), staining (SD = 7.9) and image analysis (SD = 0.5) on the overall inter-laboratory variation of DNA migration (SD = 18.2). Future studies should assess sources of variation in each of these steps. On the positive side, the hCOMET ring trial demonstrates that KBrO3 is a robust positive control for the Fpg-modified comet assay. In conclusion, the hCOMET ring trial has demonstrated a high reproducibility of detecting genotoxic effects by the comet assay, but inter-laboratory variation of DNA migration levels is a concern.

13.
Mutat Res Rev Mutat Res ; 791: 108458, 2023.
Article in English | MEDLINE | ID: mdl-37031732

ABSTRACT

The single cell gel electrophoresis technique is based on the measurement of DNA migration in an electric field and enables to investigate via determination of DNA-damage the impact of foods and their constituents on the genetic stability. DNA-damage leads to adverse effects including cancer, neurodegenerative disorders and infertility. In the last 25 years approximately 90 human intervention trials have been published in which DNA-damage, formation of oxidized bases, alterations of the sensitivity towards reactive oxygen species and chemicals and of repair functions were investigated with this technique. In approximately 50% of the studies protective effects were observed. Pronounced protection was found with certain plant foods (spinach, kiwi fruits, onions), coffee, green tea, honey and olive oil. Also diets with increased contents of vegetables caused positive effects. Small amounts of certain phenolics (gallic acid, xanthohumol) prevented oxidative damage of DNA; with antioxidant vitamins and cholecalciferol protective effects were only detected after intake of doses that exceed the recommended daily uptake values. The evaluation of the quality of the studies showed that many have methodological shortcomings (lack of controls, no calibration of repair enzymes, inadequate control of the compliance and statistical analyses) which should be avoided in future investigations.


Subject(s)
Antioxidants , Diet , Humans , Comet Assay , Antioxidants/pharmacology , Oxidative Stress , DNA Damage/genetics , DNA
14.
Mutagenesis ; 38(1): 51-57, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36242551

ABSTRACT

It is generally assumed that French fries are likely to have weak in vitro mutagenic activity, but most studies thereof have only assessed gene mutations. In this article, the genotoxicity of 10 extracts of French fries was assessed using the in vitro micronucleus test (following the principles of the OECD 487 guidelines). Each sample was obtained from a different mass catering company in Navarra (Spain). This assay, together with the Ames test, is recommended in the basic in vitro phase included in the European Food Safety Authority Opinion on Genotoxicity Testing Strategies Applicable to Food and Feed Safety Assessment. Eight of 10 samples from mass catering companies induced chromosomal aberrations in the in vitro micronucleus test. Moreover, French fries deep-fried in the laboratory for different periods of time (0, 3, 5, 10, 20, 30 min) were assessed using the in vitro micronucleus test. Genotoxicity was observed in all time periods from 3 min on. The biological relevance of these results must be further explored.


Subject(s)
Chromosome Aberrations , DNA Damage , Humans , Mutagenicity Tests , Mutation , Micronucleus Tests
15.
Article in English | MEDLINE | ID: mdl-36031332

ABSTRACT

The comet assay is used to measure DNA damage induced by chemical and physical agents. High concentrations of test agents may cause cytotoxicity or cell death, which may give rise to false positive results in the comet assay. Systematic studies on genotoxins and cytotoxins (i.e. non-genotoxic poisons) have attempted to establish a threshold of cytotoxicity or cell death by which DNA damage results measured by the comet assay could be regarded as a false positive result. Thresholds of cytotoxicity/cell death range from 20% to 50% in various publications. Curiously, a survey of the latest literature on comet assay results from cell culture studies suggests that one-third of publications did not assess cytotoxicity or cell death. We recommend that it should be mandatory to include results from at least one type of assay on cytotoxicity, cell death or cell proliferation in publications on comet assay results. A combination of cytotoxicity (or cell death) and proliferation (or colony forming efficiency assay) is preferable in actively proliferating cells because it covers more mechanisms of action. Applying a general threshold of cytotoxicity/cell death to all types of agents may not be applicable; however, 25% compared to the concurrent negative control seems to be a good starting value to avoid false positive comet assay results. Further research is needed to establish a threshold value to distinguish between true and potentially false positive genotoxic effects detected by the comet assay.


Subject(s)
DNA Damage , Mutagens , Cause of Death , Cell Death , Comet Assay
16.
Nanomaterials (Basel) ; 12(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683650

ABSTRACT

Graphene-based materials (GBMs) are a broad family of novel carbon-based nanomaterials with many nanotechnology applications. The increasing market of GBMs raises concerns on their possible impact on human health. Here, we review the existing literature on the genotoxic potential of GBMs over the last ten years. A total of 50 articles including in vitro, in vivo, in silico, and human biomonitoring studies were selected. Graphene oxides were the most analyzed materials, followed by reduced graphene oxides. Most of the evaluations were performed in vitro using the comet assay (detecting DNA damage). The micronucleus assay (detecting chromosome damage) was the most used validated assay, whereas only two publications reported results on mammalian gene mutations. The same material was rarely assessed with more than one assay. Despite inhalation being the main exposure route in occupational settings, only one in vivo study used intratracheal instillation, and another one reported human biomonitoring data. Based on the studies, some GBMs have the potential to induce genetic damage, although the type of damage depends on the material. The broad variability of GBMs, cellular systems and methods used in the studies precludes the identification of physico-chemical properties that could drive the genotoxicity response to GBMs.

17.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35335725

ABSTRACT

Worldwide antimicrobial resistance is partly caused by the overuse of antibiotics as growth promoters. Based on the known bactericidal effect of silver, a new material containing silver in a clay base was developed to be used as feed additive. An in vitro genotoxicity evaluation of this silver-kaolin clay formulation was conducted, which included the mouse lymphoma assay in L5178Y TK+/- cells and the micronucleus test in TK6 cells, following the principles of the OECD guidelines 490 and 487, respectively. As a complement, the standard and Fpg-modified comet assays for the evaluation of strand breaks, alkali labile sites and oxidative DNA damage were also performed in TK6 cells. The formulation was tested without metabolic activation after an exposure of 3 h and 24 h; its corresponding release in medium, after the continuous agitation of the silver-kaolin for 24 h was also evaluated. Under the conditions tested, the test compound did not produce gene mutations, chromosomal aberrations or DNA damage (i.e., strand breaks, alkali labile sites or oxidized bases). Considering the results obtained in the present study, the formulation seems to be a promising material to be used as antimicrobial in animal feed.

18.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36615913

ABSTRACT

A new material composed of a kaolin base with silver nanoparticles (AgNPs) attached to its surface was developed, as an alternative to antibiotics used as supplements in animal feed. As part of its safety assessment, an in vivo geno-toxicological evaluation of this material was conducted in rats. First, a preliminary dose finding study was carried out to decide the doses to be tested in the main study: 50, 300 and 2000 mg/kg b.w. For the main study, a combined strategy composed of the MN test (TG 474) and the comet assay (TG 489), integrated in a repeated dose 28-day oral toxicity study (TG 407), was performed. A No Observed Adverse Effect Level (NOAEL) of 2000 mg of the silver-kaolin formulation/kg b.w. by oral route, for 28 days, was determined. The silver-kaolin formulation did not induce micronuclei in bone marrow, or DNA strand breaks (SBs) or alkali labile sites (ALS) in liver, spleen, kidney or duodenum at any dose. The modified Fpg comet assay did not reveal oxidized bases in the same tissues at the dose of 2000 mg/kg b.w. Silver was quantified by ICP-MS in all the target organs, confirming the negative results obtained under these conditions.

20.
Eur J Med Chem ; 224: 113722, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34364164

ABSTRACT

The identification of a plant-like Achille's Heel relict, i.e. the apicoplast, that is essential for Plasmodium spp., the causative agent of malaria lead to an attractive drug target for new antimalarials with original mechanism of action. Although it is not photosynthetic, the apicoplast retains several anabolic pathways that are indispensable for the parasite. Based on previously identified antiplasmodial hit-molecules belonging to the 2-trichloromethylquinazoline and 3-trichloromethylquinoxaline series, we report herein an antiplasmodial Structure-Activity Relationships (SAR) study at position two of the quinoxaline ring of 16 newly synthesized compounds. Evaluation of their activity toward the multi-resistant K1 Plasmodium falciparum strain and cytotoxicity on the human hepatocyte HepG2 cell line revealed a hit compound (3k) with a PfK1 EC50 value of 0.3 µM and a HepG2 CC50 value of 56.0 µM (selectivity index = 175). Moreover, hit-compound 3k was not cytotoxic on VERO or CHO cell lines and was not genotoxic in the in vitro comet assay. Activity cliffs were observed when the trichloromethyl group was replaced by CH3, CF3 or H, showing that this group played a key role in the antiplasmodial activity. Biological investigations performed to determine the target and mechanism of action of the compound 3k strongly suggest that the apicoplast is the putative target as showed by severe alteration of apicoplaste biogenesis and delayed death response. Considering that there are very few molecules that affect the Plasmodium apicoplast, our work provides, for the first time, evidence of the biological target of trichloromethylated derivatives.


Subject(s)
Apicoplasts/drug effects , Plasmodium falciparum/drug effects , Quinoxalines/therapeutic use , Humans , Quinoxalines/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...