Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 21(1): 222, 2023 03 26.
Article in English | MEDLINE | ID: mdl-36967382

ABSTRACT

BACKGROUND: Despite remarkable progress, the immunotherapies currently used in the clinic, such as immune checkpoint blockade (ICB) therapy, still have limited efficacy against many types of solid tumors. One major barrier to effective treatment is the lack of a durable long-term response. Tumor-targeted superantigen (TTS) therapy may overcome this barrier to enhance therapeutic efficacy. TTS proteins, such as the clinical-stage molecule naptumomab estafenatox (NAP), increase tumor recognition and killing by both coating tumor cells with bacterial-derived superantigens (SAgs) and selectively expanding T-cell lineages that can recognize them. The present study investigated the efficacy and mechanism of action of repeated TTS (C215Fab-SEA) treatments leading to a long-term antitumor immune response as monotherapy or in combination with PD-1/PD-L1 inhibitors in murine tumor models. METHODS: We used syngeneic murine tumor models expressing the human EpCAM target (C215 antigen) to assess the efficacy and mechanism of action of repeated treatment with TTS C215Fab-SEA alone or with anti-PD-1/PD-L1 monoclonal antibodies. Tumor draining lymph nodes (TDLNs) and tumor tissues were processed and analyzed by immunophenotyping and immunohistochemistry. Isolated RNA from tumors was used to analyze gene expression and the TCR repertoire. Tumor rechallenge and T-cell transfer studies were conducted to test the long-term antitumor memory response. RESULTS: TTS therapy inhibited tumor growth and achieved complete tumor rejection, leading to a T-cell-dependent long-term memory response against the tumor. The antitumor effect was derived from inflammatory responses converting the immunosuppressive TME into a proinflammatory state with an increase in T-cell infiltration, activation and high T-cell diversity. The combination of TTS with ICB therapy was significantly more effective than the monotherapies and resulted in higher tumor-free rates. CONCLUSIONS: These new results indicate that TTSs not only can turn a "cold" tumor into a "hot" tumor but also can enable epitope spreading and memory response, which makes TTSs ideal candidates for combination with ICB agents and other anticancer agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Animals , Mice , Superantigens/therapeutic use , T-Lymphocytes , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor
2.
Cancer Immunol Res ; 8(7): 895-911, 2020 07.
Article in English | MEDLINE | ID: mdl-32312711

ABSTRACT

The immunoglobulin-like domain containing receptor 2 (ILDR2), a type I transmembrane protein belonging to the B7 family of immunomodulatory receptors, has been described to induce an immunosuppressive effect on T-cell responses. Besides its expression in several nonlymphoid tissue types, we found that ILDR2 was also expressed in fibroblastic reticular cells (FRC) in the stromal part of the lymph node. These immunoregulatory cells were located in the T-cell zone and were essential for the recruitment of naïve T cells and activated dendritic cells to the lymph nodes. Previously, it has been shown that an ILDR2-Fc fusion protein exhibits immunomodulatory effects in several models of autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and type I diabetes. Herein, we report the generation and characterization of a human/mouse/monkey cross-reactive anti-ILDR2 hIgG2 antibody, BAY 1905254, developed to block the immunosuppressive activity of ILDR2 for cancer immunotherapy. BAY 1905254 was shown to promote T-cell activation in vitro and enhance antigen-specific T-cell proliferation and cytotoxicity in vivo in mice. BAY 1905254 also showed potent efficacy in various syngeneic mouse cancer models, and the efficacy was found to correlate with increasing mutational load in the cancer models used. Additive or even synergistic antitumor effects were observed when BAY 1905254 was administered in combination with anti-PD-L1, an immunogenic cell death-inducing chemotherapeutic, or with tumor antigen immunization. Taken together, our data showed that BAY 1905254 is a potential drug candidate for cancer immunotherapy, supporting its further evaluation.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , CD8-Positive T-Lymphocytes/immunology , Immunoglobulin G/pharmacology , Lymphocyte Activation/immunology , Membrane Proteins/immunology , Neoplasms/drug therapy , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Immune Tolerance , Immunoglobulin G/immunology , Immunotherapy/methods , Leukocytes, Mononuclear/immunology , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/immunology , Neoplasms/metabolism
3.
Cancer Immunol Res ; 7(2): 244-256, 2019 02.
Article in English | MEDLINE | ID: mdl-30659055

ABSTRACT

A limitation to antitumor immunity is the dysfunction of T cells in the tumor microenvironment, in part due to upregulation of coinhibitory receptors such as PD-1. Here, we describe that poliovirus receptor-related immunoglobulin domain protein (PVRIG) acts as a coinhibitory receptor in mice. Murine PVRIG interacted weakly with poliovirus receptor (PVR) but bound poliovirus receptor-like 2 (PVRL2) strongly, making the latter its principal ligand. As in humans, murine NK and NKT cells constitutively expressed PVRIG. However, when compared with humans, less PVRIG transcript and surface protein was detected in murine CD8+ T cells ex vivo However, activated CD8+ T cells upregulated PVRIG expression. In the mouse tumor microenvironment, infiltrating CD8+ T cells expressed PVRIG whereas its ligand, PVRL2, was detected predominantly on myeloid cells and tumor cells, mirroring the expression pattern in human tumors. PVRIG-deficient mouse CD8+ T cells mounted a stronger antigen-specific effector response compared with wild-type CD8+ T cells during acute Listeria monocytogenes infection. Furthermore, enhanced CD8+ T-cell effector function inhibited tumor growth in PVRIG-/- mice compared with wild-type mice and PD-L1 blockade conferred a synergistic antitumor response in PVRIG-/- mice. Therapeutic intervention with antagonistic anti-PVRIG in combination with anti-PD-L1 reduced tumor growth. Taken together, our results suggest PVRIG is an inducible checkpoint receptor and that targeting PVRIG-PVRL2 interactions results in increased CD8+ T-cell function and reduced tumor growth.See related article on p. 257.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Cell Surface/metabolism , Animals , B7-H1 Antigen/antagonists & inhibitors , Biomarkers , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Knockout , Neoplasms/pathology , RNA Interference , T-Cell Antigen Receptor Specificity/immunology , Tumor Burden , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
4.
Cancer Immunol Immunother ; 63(4): 369-80, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24452202

ABSTRACT

Cryoablation is a low-invasive surgical procedure for management of malignant tumors. Tissue destruction is obtained by repeated deep freezing and thawing and results in coagulative necrosis and in apoptosis. This procedure induces the release of tumor-associated antigens and proinflammatory factors into the microenvironment. Local administration of immature dendritic cells (DCs) potentiates the immune response induced by cryoablation. To further augment the induction of long-lasting antitumor immunity, we investigated the clinical value of combining cryoimmunotherapy consisting of cryoablation and inoculation of immature DCs with administration of the immune adjuvant, CpG oligodeoxynucleotides. Injection of the murine Lewis lung carcinoma, D122-luc-5.5 that expresses the luciferase gene, results in spontaneous metastases, which can be easily monitored in vivo. The local tumor was treated by the combined treatment. The clinical outcome was assessed by monitoring tumor growth, metastasis in distant organs, overall survival, and protection from tumor recurrence. The nature of the induced T cell responses was analyzed. Combined cryoimmunotherapy results in reduced tumor growth, low metastasis and significantly prolonged survival. Moreover, this treatment induces antitumor memory that protected mice from rechallenge. The underlying suggested mechanisms are the generation of tumor-specific type 1 T cell responses, subsequent induction of cytotoxic T lymphocytes, and generation of systemic memory. Our data highlight the combined cryoimmunotherapy as a novel antitumor vaccine with promising preclinical results. Adjustment of this technique into practice will provide the therapeutic benefits of both, ablation of the primary tumor and induction of robust antitumor and antimetastatic immunity.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Carcinoma, Lewis Lung/therapy , CpG Islands , Cryosurgery/methods , Dendritic Cells/immunology , Immunotherapy/methods , Lung Neoplasms/therapy , Oligodeoxyribonucleotides/therapeutic use , Animals , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/secondary , Carcinoma, Lewis Lung/surgery , Cells, Cultured , Combined Modality Therapy , Dendritic Cells/transplantation , Foot , Immunologic Memory , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Lung Neoplasms/surgery , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Oligodeoxyribonucleotides/administration & dosage , Recurrence , Specific Pathogen-Free Organisms , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology
5.
J Immunol ; 187(10): 5452-62, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21998458

ABSTRACT

Gliomas that grow uninhibited in the brain almost never metastasize outside the CNS. The rare occurrences of extracranial metastasis are usually associated with a suppressed immune system. This observation raises the possibility that some gliomas might not grow outside the CNS due to an inherent immune response, We report in this study that the highly malignant F98 Fischer rat undifferentiated glioma, which grows aggressively in the brain, spontaneously regresses when injected live s.c. We found that this regression is immune-mediated and that it markedly enhances the survival or cures rats challenged with the same tumor intracranially either before or after the s.c. live-cell treatment. Adoptive transfer experiments showed the effect was immune-mediated and that the CD8 T cell fraction, which exhibited direct tumor cytotoxicity, was more effective than the CD4 T cell fraction in mediating resistance to intracranial challenge of naive rats. Brain tumors from treated rats exhibited enhanced CD3(+)CD8(+)CD4(-) and CD3(+)CD4(+)CD8(-) T cell infiltration and IFN-γ secretion. The results in the F98 glioma were corroborated in the Lewis rat CNS-1 astrocytoma. In both tumor models, s.c. treatment with live cells was significantly better than immunization with irradiated cells. We propose in this study a location-based immunotherapeutic phenomenon we term "split immunity": a tumor that thrives in an immune-privileged site may be inhibited by injecting live, unmodified tumor cells into a site that is not privileged, generating protective immunity that spreads back to the privileged site. Split immunity could explain several long-standing paradoxes regarding the lack of overt extracranial metastasis in patients with primary brain tumors.


Subject(s)
Astrocytoma/immunology , Astrocytoma/prevention & control , Cell Differentiation/immunology , Glioma/immunology , Glioma/prevention & control , Graft Rejection/immunology , Skin Neoplasms/immunology , Skin Neoplasms/prevention & control , Animals , Astrocytoma/pathology , Cell Survival/immunology , Cells, Cultured , Clone Cells , Coculture Techniques , Dose-Response Relationship, Immunologic , Female , Glioma/pathology , Graft Rejection/pathology , Injections, Intraventricular , Injections, Subcutaneous , Rats , Rats, Inbred F344 , Rats, Inbred Lew , Skin Neoplasms/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...