Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Sci ; 322: 111341, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35667250

ABSTRACT

Black-skinned and red-fleshed grape 'Brazil' is a bud sport of rosy-skinned 'Benitaka'. 'Brazil' has a much higher anthocyanin content in the skin than that of 'Benitaka' and is characterized by the accumulation of anthocyanins in the flesh. Our genomic analysis of the VvMYBA loci, which regulate anthocyanin biosynthesis, suggested that the difference in skin and flesh color between 'Brazil' and 'Benitaka' cannot be explained by genomic alteration at the loci. Expression levels of VvMYBA1 and anthocyanin biosynthesis-related genes in skin and flesh were significantly higher in 'Brazil' than in 'Benitaka' throughout berry development. DNA methylation levels in the 3' long terminal repeat (LTR) of a retrotransposon in the upstream region of VvMYBA1BEN allele were clearly higher in the skin and flesh of 'Benitaka' than in those of 'Brazil' throughout berry development. These findings suggest that a dramatic decrease in DNA methylation level in the 3' LTR of the retrotransposon in the VvMYBA1BEN allele in 'Brazil' increases the expression levels of VvMYBA1 and anthocyanin accumulation in skin and flesh. Our findings also suggest that skin and flesh colors are inherited together and vary depending on the presence or absence of the VvMYBA1BEN allele.


Subject(s)
Vitis , Alleles , Anthocyanins/metabolism , Demethylation , Fruit , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Retroelements/genetics , Terminal Repeat Sequences , Vitis/metabolism
2.
J Exp Bot ; 67(18): 5429-5445, 2016 10.
Article in English | MEDLINE | ID: mdl-27543604

ABSTRACT

Grapevine (Vitis vinifera L.) is a species well known for its adaptation to radiation. However, photomorphogenic factors related to UV-B responses have not been molecularly characterized. We cloned and studied the role of UV-B RECEPTOR (UVR1), ELONGATED HYPOCOTYL 5 (HY5), and HY5 HOMOLOGUE (HYH) from V. vinifera We performed gene functional characterizations, generated co-expression networks, and tested them in different environmental conditions. These genes complemented the Arabidopsis uvr8 and hy5 mutants in morphological and secondary metabolic responses to radiation. We combined microarray and RNA sequencing (RNA-seq) data with promoter inspections to identify HY5 and HYH putative target genes and their DNA binding preferences. Despite sharing a large set of common co-expressed genes, we found different hierarchies for HY5 and HYH depending on the organ and stress condition, reflecting both co-operative and partially redundant roles. New candidate UV-B gene markers were supported by the presence of HY5-binding sites. These included a set of flavonol-related genes that were up-regulated in a HY5 transient expression assay. We irradiated in vitro plantlets and fruits from old potted vines with high and low UV-B exposures and followed the accumulation of flavonols and changes in gene expression in comparison with non-irradiated conditions. UVR1, HY5, and HYH expression varied with organ, developmental stage, and type of radiation. Surprisingly, UVR1 expression was modulated by shading and temperature in berries, but not by UV-B radiation. We propose that the UV-B response machinery favours berry flavonol accumulation through the activation of HY5 and HYH at different developmental stages at both high and low UV-B exposures.


Subject(s)
Flavonols/metabolism , Plant Proteins/physiology , Signal Transduction/radiation effects , Transcription Factors/physiology , Vitis/radiation effects , Cloning, Molecular , Fruit/metabolism , Gene Expression Regulation, Plant/physiology , Gene Expression Regulation, Plant/radiation effects , Genes, Plant/genetics , Genes, Plant/physiology , Signal Transduction/physiology , Ultraviolet Rays , Up-Regulation/physiology , Up-Regulation/radiation effects , Vitis/metabolism , Vitis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL