Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
J Pharmacol Sci ; 155(3): 94-100, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797538

ABSTRACT

Interleukin (IL-19) belongs to the IL-10 family of cytokines and plays diverse roles in inflammation, cell development, viral responses, and lipid metabolism. Acute lung injury (ALI) is a severe respiratory condition associated with various diseases, including severe pneumonia, sepsis, and trauma, lacking established treatments. However, the role of IL-19 in acute inflammation of the lungs is unknown. We reported the impact of IL-19 functional deficiency in mice crossed with an ALI model using HCl. Lungs damages, neutrophil infiltration, and pulmonary edema induced by HCl were significantly worse in IL-19 knockout (KO) mice than in wild-type (WT) mice. mRNA expression levels of C-X-C motif chemokine ligand 1 (CXCL1) and IL-6 in the lungs were significantly higher in IL-19 KO mice than in WT mice. Little apoptosis was detected in lung injury in WT mice, whereas apoptosis was observed in exacerbated area of lung injury in IL-19 KO mice. These results are the first to show that IL-19 is involved in acute inflammation of the lungs, suggesting a novel molecular mechanism in acute respiratory failures. If it can be shown that neutrophils have IL-19 receptors and that IL-19 acts directly on them, it would be a novel drug target.


Subject(s)
Acute Lung Injury , Hydrochloric Acid , Interleukins , Mice, Knockout , Animals , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Interleukins/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Interleukin-6/metabolism , Interleukin-6/genetics , Disease Models, Animal , Neutrophil Infiltration , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Male , Lung/pathology , Lung/metabolism , Apoptosis/genetics , Apoptosis/drug effects , Mice , Neutrophils , Pulmonary Edema/etiology , Gene Expression
2.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791484

ABSTRACT

Lipid droplet (LD) accumulation in hepatocytes is one of the major symptoms associated with fatty liver disease. Mitochondria play a key role in catabolizing fatty acids for energy production through ß-oxidation. The interplay between mitochondria and LD assumes a crucial role in lipid metabolism, while it is obscure how mitochondrial morphology affects systemic lipid metabolism in the liver. We previously reported that cilnidipine, an already existing anti-hypertensive drug, can prevent pathological mitochondrial fission by inhibiting protein-protein interaction between dynamin-related protein 1 (Drp1) and filamin, an actin-binding protein. Here, we found that cilnidipine and its new dihydropyridine (DHP) derivative, 1,4-DHP, which lacks Ca2+ channel-blocking action of cilnidipine, prevent the palmitic acid-induced Drp1-filamin interaction, LD accumulation and cytotoxicity of human hepatic HepG2 cells. Cilnidipine and 1,4-DHP also suppressed the LD accumulation accompanied by reducing mitochondrial contact with LD in obese model and high-fat diet-fed mouse livers. These results propose that targeting the Drp1-filamin interaction become a new strategy for the prevention or treatment of fatty liver disease.


Subject(s)
Dihydropyridines , Dynamins , Lipid Droplets , Liver , Animals , Dynamins/metabolism , Humans , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Mice , Hep G2 Cells , Liver/metabolism , Liver/drug effects , Liver/pathology , Dihydropyridines/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Lipid Metabolism/drug effects , Male , Mitochondrial Dynamics/drug effects , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Hepatocytes/drug effects
3.
Int J Mol Sci ; 25(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38397074

ABSTRACT

We recently reported that transient receptor potential canonical (TRPC) 6 channel activity contributes to intracellular Zn2+ homeostasis in the heart. Zn2+ has also been implicated in the regulation of intestinal redox and microbial homeostasis. This study aims to investigate the role of TRPC6-mediated Zn2+ influx in the stress resistance of the intestine. The expression profile of TRPC1-C7 mRNAs in the actively inflamed mucosa from inflammatory bowel disease (IBD) patients was analyzed using the GEO database. Systemic TRPC3 knockout (KO) and TRPC6 KO mice were treated with dextran sulfate sodium (DSS) to induce colitis. The Zn2+ concentration and the mRNA expression levels of oxidative/inflammatory markers in colon tissues were quantitatively analyzed, and gut microbiota profiles were compared. TRPC6 mRNA expression level was increased in IBD patients and DSS-treated mouse colon tissues. DSS-treated TRPC6 KO mice, but not TRPC3 KO mice, showed severe weight loss and increased disease activity index compared with DSS-treated WT mice. The mRNA abundances of antioxidant proteins were basically increased in the TRPC6 KO colon, with changes in gut microbiota profiles. Treatment with TRPC6 activator prevented the DSS-induced colitis progression accompanied by increasing Zn2+ concentration. We suggest that TRPC6-mediated Zn2+ influx activity plays a key role in stress resistance against IBD, providing a new strategy for treating colitis.


Subject(s)
Inflammatory Bowel Diseases , TRPC6 Cation Channel , Animals , Humans , Mice , Colon/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Intestines , Mice, Inbred C57BL , RNA, Messenger/metabolism , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism
4.
Exp Anim ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057085

ABSTRACT

IL-19 is a member of IL-10 family and is mainly produced by macrophages. Acute pancreatitis (AP) is an inflammatory disease characterized by acinar cell injury and necrosis. In the present study, the role of IL-19 in AP and AP-associated lung injury in mice was explored using L-arginine-induced pancreatitis. Experimental pancreatitis was induced by intraperitoneal injection of L-arginine in wild-type (WT) and IL-19 gene deficient (IL-19 KO) mice. In L-arginine treated mice, the serum amylase level was significantly increased in IL-19 KO mice, and interstitial edema, analyzed using hematoxylin and eosin (H&E)-stained sections, was aggravated mildly in IL-19 KO mice compared to WT mice. Compared to WT mice treated with L-arginine, mRNA expression of tumor necrosis factor (TNF)-α was significantly upregulated in IL-19 KO mice treated with L-arginine. In WT mice, IL-19 mRNA was equally expressed in the pancreas of both control and L-arginine treated mice. The condition of lung alveoli in WT and IL-19 KO mice treated with L-arginine was then evaluated. In mice with L-arginine-induced pancreatitis, alveolar area was remarkedly decreased, and expression of lung myeloperoxidase was significantly increased in IL-19 KO mice compared to WT mice. In the lungs, mRNA expressions of IL-6 and inducible nitric oxide synthase were significantly increased in IL-19 KO mice compared to WT mice. In summary, IL-19 was proposed to alleviate L-arginine-induced pancreatitis by regulating TNF-α production and to protect against AP-related lung injury by inhibiting neutrophil migration.

5.
Biomedicines ; 11(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37509702

ABSTRACT

IL-19 is a cytokine discovered by homologous searching with IL-10 and is produced by non-immune cells, such as keratinocytes, in addition to immune cells, such as macrophages. Liver fibrosis results from the inflammation and activation of hepatic stellate cells via chronic liver injury. However, the participation of IL-19 in liver fibrosis remains to be sufficiently elucidated. Our group studied the immunological function of IL-19 in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. IL-19 gene-deficient (KO) mice and body weight-matched wild-type (WT) mice were used. A liver fibrosis mouse model was created via CCl4 administration (two times per week) for 8 weeks. In CCl4-induced liver fibrosis, serum analysis revealed that IL-19 KO mice had higher ALT levels compared to WT mice. IL-19 KO mice had worse fibrosis, as assessed by morphological evaluation of total area stained positive with Azan and Masson trichrome. In addition, the expression of α-SMA was increased in liver tissues of IL-19 KO mice compared to WT mice. Furthermore, mRNA expression levels of TGF-ß and α-SMA were enhanced in IL-19 KO mice compared to WT mice. In vitro assays revealed that IL-19-high expressing RAW264.7 cells inhibited the migration of NIH3T3 cells via the inhibited expression of CCL2 in the presence of CCl4 and IL-4. These findings indicate that IL-19 plays a critical role in liver fibrosis by affecting TGF-ß signaling and the migration of hepatic stellate cells during liver injury. Enhancement of the IL-19 signaling pathway is a potential treatment for liver fibrosis.

6.
J Vet Med Sci ; 85(6): 657-666, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37100607

ABSTRACT

Na+/Ca2+ exchangers (NCX) are an exchange transporter of Na+ and Ca2+ ions on the plasma membrane. There are three types of NCX: NCX1, NCX2, and NCX3. We have been working for many years to understand the role of NCX1 and NCX2 in gastrointestinal motility. In this study, we focused on the pancreas, an organ closely related to the gastrointestinal tract, and used a mouse model of acute pancreatitis to investigate a possible role for NCX1 in the pathogenesis of pancreatitis. We characterized a model of acute pancreatitis induced by excessive doses of L-arginine. We administered the NCX1 inhibitor SEA0400 (1 mg/kg) 1 hr prior to L-arginine-induced pancreatitis and evaluated pathological changes. Mice treated with NCX1 inhibitors show exacerbation of the disease with decreased survival and increased amylase activity in response to L-arginine-induced experimental acute pancreatitis, and this exacerbation correlates with increased autophagy mediated by LC3B and p62. These results suggest that NCX1 has a role in regulating pancreatic inflammation and acinar cell homeostasis.


Subject(s)
Pancreatitis , Mice , Animals , Sodium-Calcium Exchanger/metabolism , Acute Disease , Pancreatitis/chemically induced , Pancreatitis/veterinary , Gastrointestinal Motility , Calcium/metabolism
7.
Nihon Yakurigaku Zasshi ; 157(5): 321-324, 2022.
Article in Japanese | MEDLINE | ID: mdl-36047144

ABSTRACT

The living body is composed of diverse organ systems, each of which has its own characteristic control mechanisms and complex in vivo responses. Between the brain and organs such as the heart, kidney, liver, pancreas, gastrointestinal tract, and even muscles, there is a sophisticated and complex regulatory system. Coordinated interactions through communication between organs are essential for maintaining health. In this review, we introduce four research trends in inter-organ networks, with a focus on the digestive system: 1) Inter-organ networks on metabolic systems, 2) Inter-organ networks originating from the gastrointestinal tract, 3) Intestinal bacteria, that is one of the biggest topics in recent years, 4) Research results on the involvement of gut microbiota in the inter-organ network between the kidney and the gastrointestinal tract. An integrated understanding and investigation of the regulatory mechanisms of inter-organ communication networks are expected to extend healthy life span and improve quality of life.


Subject(s)
Gastrointestinal Microbiome , Brain/metabolism , Gastrointestinal Tract/physiology , Liver , Quality of Life
8.
J Vet Med Sci ; 84(8): 1061-1064, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35691932

ABSTRACT

Stress affects a variety of organs. Diarrhea and constipation are closely related to stress, which involves the gastrointestinal motility of the colon. We compared the gastrointestinal motility of the proximal, mid, and distal colon in mice with stress. Stress was applied by water immersion restraint. Colon motility was measured using an isotonic transducer in the direction of the circular muscles. Electric field stimulation-induced contractions in stressed mice were reduced compared to control mice in the proximal and distal colon. On the other hand, in the mid colon, contraction in control mice and stressed mice were almost same. This interesting difference between the regions may provide a clue to the functional abnormalities in gastrointestinal motility associated with stress.


Subject(s)
Muscle Contraction , Muscle, Smooth , Animals , Colon , Electric Stimulation , Gastrointestinal Motility , Mice
9.
Sci Signal ; 15(716): eabj0644, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35015570

ABSTRACT

After ligand stimulation, many G protein­coupled receptors (GPCRs) undergo ß-arrestin­dependent desensitization, during which they are internalized and either degraded or recycled to the plasma membrane. Some GPCRs are not subject to this type of desensitization because they lack the residues required to interact with ß-arrestins. We identified a mechanism of redox-dependent alternative internalization (REDAI) that promotes the internalization and degradation of the purinergic P2Y6 receptor (P2Y6R). Synthetic and natural compounds containing electrophilic isothiocyanate groups covalently modified P2Y6R at Cys220, which promoted the ubiquitylation of Lys137 and receptor internalization and degradation in various mouse and human cultured cell lines. Endogenous electrophiles also promoted ligand-dependent P2Y6R internalization and degradation. P2Y6R is highly abundant in inflammatory cells and promotes the pathogenesis of colitis. Deficiency in P2Y6R protected mice against experimentally induced colitis, and mice expressing a form of P2Y6R in which Cys220 was mutated to nonmodifiable serine were more sensitive to the induction of colitis. Several other GPCRs, including A2BAR, contain cysteine and lysine residues at the appropriate positions to mediate REDAI, and isothiocyanate stimulated the internalization of A2BAR and of a form of P2Y2R with insertions of the appropriate residues. Thus, endogenous and exogenous electrophiles may limit colitis progression through cysteine modification of P2Y6R and may also mediate internalization of other GPCRs.


Subject(s)
Colitis , Receptors, Purinergic P2 , Animals , Colitis/genetics , Humans , Mice , Oxidation-Reduction , Receptors, Purinergic P2/metabolism , beta-Arrestins/metabolism
10.
Cells ; 10(12)2021 12 13.
Article in English | MEDLINE | ID: mdl-34944021

ABSTRACT

Interleukin (IL)-19, a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. Nonalcoholic steatohepatitis (NASH) is a disease that has progressed from nonalcoholic fatty liver disease (NAFLD) and is characterized by inflammation and fibrosis. We evaluated the functions of IL-19 in a NAFLD/NASH mouse model using a 60% high fat diet with 0.1% methionine, without choline, and with 2% cholesterol (CDAHFD). Wild-type (WT) and IL-19 gene-deficient (KO) mice were fed a CDAHFD or standard diet for 9 weeks. Liver injury, inflammation, and fibrosis induced by CDAHFD were significantly worse in IL-19 KO mice than in WT mice. IL-6, TNF-α, and TGF-ß were significantly higher in IL-19 KO mice than in WT mice. As a mechanism using an in vitro experiment, palmitate-induced triglyceride and cholesterol contents were decreased by the addition of IL-19 in HepG2 cells. Furthermore, addition of IL-19 decreased the expression of fatty acid synthesis-related enzymes and increased ATP content in HepG2 cells. The action of IL-19 in vitro suppressed lipid metabolism. In conclusion, IL-19 may play an important role in the development of steatosis and fibrosis by directly regulating liver metabolism and may be a potential target for the treatment of liver diseases.


Subject(s)
Inflammation/genetics , Interleukins/genetics , Lipid Metabolism/genetics , Non-alcoholic Fatty Liver Disease/genetics , Adenosine Triphosphate/metabolism , Animals , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids/biosynthesis , Fatty Acids/genetics , Hep G2 Cells , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/genetics , Liver/injuries , Liver/metabolism , Liver/pathology , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Palmitates/pharmacology , Transforming Growth Factor beta/genetics , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/genetics
11.
Nihon Yakurigaku Zasshi ; 156(5): 288-291, 2021.
Article in Japanese | MEDLINE | ID: mdl-34470933

ABSTRACT

Interleukin-19 (IL-19) is a member of the IL-10 family and is an anti-inflammatory cytokine produced mainly by macrophages, epithelial cells, and vascular smooth muscle cells. In addition, receptors for IL-19, IL-20 receptor 1 and IL-20 receptor 2, are also expressed in the cells mentioned above. The last 10 years from the finding of IL-19, investigations underline the anti-inflammatory role of IL-19 in the human diseases such as psoriasis, asthma, arteriosclerosis, and inflammatory bowel disease. If it is a pro-inflammatory cytokine, therapeutic applications may include the use of neutralizing antibodies, however, because IL-19 exhibits anti-inflammatory effects, recombinant products may be useful in therapeutic applications. However, the therapeutic applications of IL-19 for human disease have not yet been developed. In this review, we present the new findings on the preventive and therapeutic effects of IL-19 on various mouse disease models. Increasing knowledge about mouse disease models will increase the feasibility of future human disease applications.


Subject(s)
Inflammatory Bowel Diseases , Psoriasis , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines , Inflammatory Bowel Diseases/drug therapy , Interleukins , Mice
12.
Nihon Yakurigaku Zasshi ; 156(5): 270, 2021.
Article in Japanese | MEDLINE | ID: mdl-34470929
13.
Mol Brain ; 14(1): 74, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931083

ABSTRACT

Neuroinflammation by activated microglia and astrocytes plays a critical role in progression of amyotrophic lateral sclerosis (ALS). Interleukin-19 (IL-19) is a negative-feedback regulator that limits pro-inflammatory responses of microglia in an autocrine and paracrine manner, but it remains unclear how IL-19 contributes to ALS pathogenesis. We investigated the role of IL-19 in ALS using transgenic mice carrying human superoxide dismutase 1 with the G93A mutation (SOD1G93A Tg mice). We generated IL-19-deficient SOD1G93A Tg (IL-19-/-/SOD1G93A Tg) mice by crossing SOD1G93A Tg mice with IL-19-/- mice, and then evaluated disease progression, motor function, survival rate, and pathological and biochemical alternations in the resultant mice. In addition, we assessed the effect of IL-19 on glial cells using primary microglia and astrocyte cultures from the embryonic brains of SOD1G93A Tg mice and IL-19-/-/SOD1G93A Tg mice. Expression of IL-19 in primary microglia and lumbar spinal cord was higher in SOD1G93A Tg mice than in wild-type mice. Unexpectedly, IL-19-/-/SOD1G93A Tg mice exhibited significant improvement of motor function. Ablation of IL-19 in SOD1G93A Tg mice increased expression of both neurotoxic and neuroprotective factors, including tumor necrosis factor-α (TNF-α), IL-1ß, glial cell line-derived neurotrophic factor (GDNF), and transforming growth factor ß1, in lumbar spinal cord. Primary microglia and astrocytes from IL-19-/-/SOD1G93A Tg mice expressed higher levels of TNF-α, resulting in release of GDNF from astrocytes. Inhibition of IL-19 signaling may alleviate ALS symptoms.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Gene Deletion , Interleukins/deficiency , Motor Activity/physiology , Animals , Astrocytes/metabolism , Cytokines/metabolism , Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Inflammation Mediators/metabolism , Interleukins/metabolism , Longevity , Lumbar Vertebrae/metabolism , Lumbar Vertebrae/pathology , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/metabolism , Phenotype , Receptors, Interleukin/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
14.
Front Immunol ; 12: 615898, 2021.
Article in English | MEDLINE | ID: mdl-33776998

ABSTRACT

Interleukin-19 (IL-19) acts as a negative-feedback regulator to limit proinflammatory response of macrophages and microglia in autocrine/paracrine manners in various inflammatory diseases. Multiple sclerosis (MS) is a major neuroinflammatory disease in the central nervous system (CNS), but it remains uncertain how IL-19 contributes to MS pathogenesis. Here, we demonstrate that IL-19 deficiency aggravates experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by promoting IL-17-producing helper T cell (Th17 cell) infiltration into the CNS. In addition, IL-19-deficient splenic macrophages expressed elevated levels of major histocompatibility complex (MHC) class II, co-stimulatory molecules, and Th17 cell differentiation-associated cytokines such as IL-1ß, IL-6, IL-23, TGF-ß1, and TNF-α. These observations indicated that IL-19 plays a critical role in suppression of MS pathogenesis by inhibiting macrophage antigen presentation, Th17 cell expansion, and subsequent inflammatory responses. Furthermore, treatment with IL-19 significantly abrogated EAE. Our data suggest that IL-19 could provide significant therapeutic benefits in patients with MS.


Subject(s)
Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Interleukins/metabolism , Animals , Biomarkers , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Immunohistochemistry , Immunophenotyping , Interleukins/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/adverse effects , Myelin-Oligodendrocyte Glycoprotein/immunology , Spinal Cord/metabolism , Spinal Cord/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
15.
J Vet Med Sci ; 83(4): 622-629, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33583865

ABSTRACT

Excessive stress response causes disability in social life. There are many diseases caused by stress, such as gastrointestinal motility disorders, depression, eating disorders, and cardiovascular diseases. Transient receptor potential (TRP) channels underlie non-selective cation currents and are downstream effectors of G protein-coupled receptors. Ca2+ influx is important for smooth muscle contraction, which is responsible for gastrointestinal motility. Little is known about the possible involvement of TRP channels in the gastrointestinal motility disorders due to stress. The purpose of this study was to measure the changes in gastrointestinal motility caused by stress and to elucidate the mechanism of these changes. The stress model used the water immersion restraint stress. Gastrointestinal motility, especially the ileum, was recorded responses to electric field stimulation (EFS) by isometric transducer. EFS-induced contraction was significantly reduced in the ileum of stressed mouse. Even under the conditions treated with atropine, EFS-induced contraction was significantly reduced in the ileum of stressed mouse. In addition, carbachol-induced, neurokinin A-induced, and substance P-induced contractions were all significantly reduced in the ileum of stressed mouse. Furthermore, the expression of TRPC3 was decreased in the ileum of stressed mouse. These results suggest that the gastrointestinal motility disorders due to stress is associated with specific non-selective cation channel.


Subject(s)
Muscle, Smooth , Transient Receptor Potential Channels , Animals , Carbachol/pharmacology , Electric Stimulation , Gastrointestinal Motility , Ileum , Mice , Muscle Contraction
16.
Curr Mol Pharmacol ; 14(2): 191-199, 2021.
Article in English | MEDLINE | ID: mdl-32329704

ABSTRACT

IL-19 is a type of anti-inflammatory cytokine. Since the receptor for IL-19 is common to IL-20 and IL-24, it is important to clarify the role of each of the three cytokines. If three different cytokines bind to the same receptor, these three may have been produced to complement the other two. However, perhaps it is unlikely. Recently, the existence of a novel receptor for IL-19 was suggested. The distinction between the roles of the three cytokines still makes sense. On the other hand, because T cells do not produce IL-19, their role in acquired immunity is limited or indirect. It has been reported that IL-19 causes inflammation in some diseases but does not have an anti-inflammatory effect. In this review, we introduce the current role of IL-19 in each disease. In addition, we will describe the molecular mechanism of IL-19 and its development for the prevention of diseases. IL-19 was previously considered an anti-inflammatory cytokine, but we would like to propose it as an immunoregulatory cytokine.


Subject(s)
Anti-Inflammatory Agents/metabolism , Biomarkers/metabolism , Inflammation/metabolism , Interleukins/metabolism , Animals , Arthritis/metabolism , Cardiovascular Diseases/metabolism , Dermatitis/metabolism , Humans , Immune System , Inflammatory Bowel Diseases/metabolism , Interleukins/genetics , Molecular Targeted Therapy , Receptors, Cytokine/metabolism , Signal Transduction
17.
J Vet Med Sci ; 82(10): 1450-1455, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32779617

ABSTRACT

Interleukin (IL)-19 is a cytokine clustered in the IL-20 cytokine superfamily with both anti-inflammatory and pro-inflammatory aspects depending on the etiology of inflammatory disease. The function of IL-19 has been evaluated in cutaneous and inflammatory bowel diseases, but has not been studied in liver diseases. Here, we examined the effect of IL-19 on acute liver failure (ALF) using two mouse models of ALF: lipopolysaccharide and D-galactosamine (LPS/GalN)-induced model and concanavalin A (ConA)-induced model. In the LPS/GalN-induced ALF model, which is mainly caused by the innate immune response of liver macrophages, IL-19 knockout (KO) mice showed increased plasma level of liver deviation enzymes, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) compared with wild-type (WT) mice. In histopathology of liver sections, IL-19 KO mice exacerbated liver injury with marked hemorrhagic lesions and hepatocellular death in the liver compared with WT mice. In this model, mRNA expressions of pro-inflammatory chemokines, CCL2 and CCL5 were increased in liver tissue from IL-19 KO mice compared with WT mice. Moreover, the mRNA expressions of IL-19 and its receptor subunit were induced in liver tissue by LPS/GalN administration. However, there is no difference in liver injury between WT and IL-19KO in the ConA-induced ALF model induced by CD4+ T cell activation. These data suggest that IL-19 has a protective effect against inflammation-mediated liver injury, which is dependent on the etiology.


Subject(s)
Liver Failure, Acute , Rodent Diseases , Alanine Transaminase , Animals , Aspartate Aminotransferases , Galactosamine/toxicity , Interleukins , Lipopolysaccharides/toxicity , Liver , Liver Failure, Acute/chemically induced , Liver Failure, Acute/veterinary , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha
19.
J Vet Med Sci ; 82(7): 891-896, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32378521

ABSTRACT

Interleukin (IL)-19 is a cytokine of the IL-10 family. There are many reports on the involvement of IL-19 in several human diseases. There also are many reports elucidating the role of IL-19 using mouse disease models. Most reports use C57BL/6 mice, whereas few reports use BALB/c mice, in terms of the mouse disease model that the researchers used in the present study. To date, research on the role of IL-19 is diversified, yet some basic mechanisms are still unclear. In this study, we administered lipopolysaccharide (LPS), polyI:C, and CpG to BALB/c mice, measured more than 20 cytokines in the blood and compared them with that of the wild-type and IL-19-deficient (IL-19 KO) mice. LPS is associated with bacterial infection, polyI:C is associated with viral infection, and CpG is associated with both bacterial and viral infections. Among the cytokines measured, the results of experiments using LPS revealed that the production of some cytokines was suppressed in IL-19 KO mice. Interestingly, the experiments using polyI:C revealed that production of some cytokines was enhanced in IL-19 KO mice. However, the experiments using CpG have shown that the production of only one cytokine was enhanced in IL-19 KO mice. These results revealed that cytokine production in the blood was regulated by IL-19, and the type of regulation was dependent on the administered stimulant.


Subject(s)
Cytokines/metabolism , Interleukins/genetics , Lipopolysaccharides/pharmacology , Animals , Cytokines/blood , Disease Models, Animal , Interleukins/metabolism , Male , Mice, Inbred BALB C , Mice, Knockout , Oligodeoxyribonucleotides/pharmacology , Poly I-C/pharmacology
20.
Int J Mol Sci ; 21(6)2020 Mar 22.
Article in English | MEDLINE | ID: mdl-32235696

ABSTRACT

Fucoxanthin (FX) is a xanthophyll that is contained abundantly in marine plants. The biological action of FX includes its antioxidant and anti-lipogenic activities, while the precise action of its mechanisms on skin cells has not yet been clarified. The current study examined the effect of FX in comparison with tacrolimus (TAC) on NC/Nga mice, which are an atopic dermatitis (AD) model. FX topical treatment dramatically ameliorated itching behavior over the TAC treatment, which was insufficient for improvement of AD symptoms. In Nc/Nga mice, FX or TAC applied to the skin inhibited eosinophil infiltration with decreased expression of Il-33. FX also stimulated Il-2, Il-5, Il-13, Il-10, and TGF-ß expression levels, and Sca1+Il-10+TGF-ß+ regulatory innate lymphoid cells (ILCreg) were dominantly observed in FX treated skin epidermal keratinocytes and dermal layers. This combined evidence demonstrated that FX exerts anti-inflammatory effects on keratinocytes and ameliorates AD symptoms by regulating ILCreg to normalize immune responses in an atopic dermatitis model.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Dermatitis, Atopic/drug therapy , Keratinocytes/drug effects , Lymphocytes/drug effects , Xanthophylls/therapeutic use , Animals , Cells, Cultured , Dermatitis, Atopic/immunology , Immunity, Innate/drug effects , Keratinocytes/immunology , Lymphocytes/immunology , Mice , Tacrolimus/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...