Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Open Vet J ; 14(1): 389-397, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633161

ABSTRACT

Background: Minced meat is a valuable source of nutrients, but it is vulnerable to contamination by microorganisms commonly present in the environment. In addition, there is a risk of adulteration with cheaper meat sources, which can be harmful to consumers. Aim: It is crucial to identify meat adulteration with distinct microbiological analysis for legal, economic, religious, and public health purposes. Methods: A total of 100 minced meat samples were collected from several markets in Sharkia Governorate, Egypt. These samples were then subjected to bacteriological testing and an advanced multiplex PCR method. This method enables the detection of bovine, equine, porcine, and dog species in meat samples with just one step. Results: The adulterated samples had a higher total bacterial count and pH values compared to pure bovine meat. These differences in bacterial count and pH values were statistically significant, with p-values of 0.843 (log10) and 0.233, respectively. The frequency of Escherichia coli occurrence was 13%, and the O111 serotype was predominant in the adulterated samples. Listeria monocytogenes and Staphylococcus aureus were isolated with prevalence rates of 3% and 29%, respectively. Besides, the SYBR-green multiplex real-time PCR assay used in this study detected adulteration with dog, equine, and porcine meats in the examined samples at rates of 9%, 5%, and 4%, respectively. Conclusion: This method provides a sensitive and specific approach to detect issues related to well-being and safety.


Subject(s)
Benzothiazoles , Diamines , Food Contamination , Meat , Quinolines , Animals , Cattle , Horses , Swine , Dogs , Real-Time Polymerase Chain Reaction/veterinary , Food Contamination/analysis , Multiplex Polymerase Chain Reaction/veterinary , Escherichia coli
2.
Open Vet J ; 14(1): 416-427, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633182

ABSTRACT

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. Staphylococcus aureus, a common bacterium, can cause ALI through its virulence factors. Aloe vera is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties. Chitosan nanoparticles are biocompatible and totally biodegradable materials that have shown potential in drug delivery systems. Aim: To explore the antibacterial activity of Aloe vera-loaded chitosan nanoparticles (AV-CS-NPs) against S. aureus in vitro and in vivo with advanced techniques. Methods: The antibacterial efficacy of AV-CS-NPs was evaluated through a broth microdilution assay. In addition, the impact of AV-CS-NPs on S. aureus-induced ALI in rats was examined by analyzing the expression of genes linked to inflammation, oxidative stress, and apoptosis. Furthermore, rat lung tissue was scanned histologically. The rats were divided into three groups: control, ALI, and treatment with AV-CS-NPs. Results: The AV-CS-NPs that were prepared exhibited clustered semispherical and spherical forms, having an average particle size of approximately 60 nm. These nanoparticles displayed a diverse structure with an uneven distribution of particle sizes. The maximum entrapment efficiency of 95.5% ± 1.25% was achieved. The obtained findings revealed that The minimum inhibitory concentration and minimum bactericidal concentration values were determined to be 5 and 10 ug/ml, respectively, indicating the potent bactericidal effect of the NPs. Also, S. aureus infected rats explored upregulation in the mRNA expression of TLR2 and TLR4 compared to healthy control groups. AV-CS-NP treatment reverses the case where there was repression in mRNA expression of TLR2 and TLR4 compared to S. aureus-treated rats. Conclusion: These NPs can serve as potential candidates for the development of alternative antimicrobial agents.


Subject(s)
Acute Lung Injury , Aloe , Chitosan , Nanoparticles , Rodent Diseases , Rats , Animals , Chitosan/chemistry , Chitosan/pharmacology , NF-kappa B/pharmacology , Staphylococcus aureus , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Nanoparticles/chemistry , Signal Transduction , Anti-Bacterial Agents/pharmacology , Acute Lung Injury/veterinary , Inflammation/veterinary , RNA, Messenger/pharmacology
3.
J Ovarian Res ; 17(1): 86, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654363

ABSTRACT

Target-driven cancer therapy is a notable advancement in precision oncology that has been accompanied by substantial medical accomplishments. Ovarian cancer is a highly frequent neoplasm in women and exhibits significant genomic and clinical heterogeneity. In a previous publication, we presented an extensive bioinformatics study aimed at identifying specific biomarkers associated with ovarian cancer. The findings of the network analysis indicate the presence of a cluster of nine dysregulated hub genes that exhibited significance in the underlying biological processes and contributed to the initiation of ovarian cancer. Here in this research article, we are proceeding our previous research by taking all hub genes into consideration for further analysis. GEPIA2 was used to identify patterns in the expression of critical genes. The KM plotter analysis indicated that the out of all genes 5 genes are statistically significant. The cBioPortal platform was further used to investigate the frequency of genetic mutations across the board and how they affected the survival of the patients. Maximum mutation was reported by ELAVL2. In order to discover viable therapeutic candidates after competitive inhibition of ELAVL2 with small molecular drug complex, high throughput screening and docking studies were used. Five compounds were identified. Overall, our results suggest that the ELAV-like protein 2-ZINC03830554 complex was relatively stable during the molecular dynamic simulation. The five compounds that have been found can also be further examined as potential therapeutic possibilities. The combined findings suggest that ELAVL2, together with their genetic changes, can be investigated in therapeutic interventions for precision oncology, leveraging early diagnostics and target-driven therapy.


Subject(s)
Computational Biology , Ovarian Neoplasms , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Female , Computational Biology/methods , Mutation , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Molecular Targeted Therapy , Molecular Docking Simulation , ELAV-Like Protein 2/genetics
4.
Sci Rep ; 14(1): 7971, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575637

ABSTRACT

This study was divided into two parts. The first part involved the isolation, and detection of the prevalence and antimicrobial resistance profile of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio species from Nile tilapia fish and marine aquatic water. One hundred freshly dead Nile tilapia fish were collected from freshwater aquaculture fish farms located in Al-Abbassah district, Sharkia Governorate, and 100 samples of marine aquatic water were collected from fish farms in Port Said. The second part of the study focused on determining the in vitro inhibitory effect of dual-combination of AgNPs-H2O2 on bacterial growth and its down regulatory effect on crucial virulence factors using RT-PCR. The highest levels of A. hydrophila and P. aeruginosa were detected in 43%, and 34% of Nile tilapia fish samples, respectively. Meanwhile, the highest level of Vibrio species was found in 37% of marine water samples. Additionally, most of the isolated A. hydrophila, P. aeruginosa and Vibrio species exhibited a multi-drug resistance profile. The MIC and MBC results indicated a bactericidal effect of AgNPs-H2O2. Furthermore, a transcriptional modulation effect of AgNPs-H2O2 on the virulence-associated genes resulted in a significant down-regulation of aerA, exoU, and trh genes in A. hydrophila, P. aeruginosa, and Vibrio spp., respectively. The findings of this study suggest the effectiveness of AgNPs-H2O2 against drug resistant pathogens related to aquaculture.


Subject(s)
Cichlids , Fish Diseases , Metal Nanoparticles , Animals , Hydrogen Peroxide/pharmacology , Silver/pharmacology , Fisheries , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/genetics , Water/pharmacology , Fish Diseases/drug therapy , Fish Diseases/microbiology , Aeromonas hydrophila
5.
Redox Rep ; 29(1): 2319963, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38411133

ABSTRACT

Objectives: Distant liver injury is a complication of renal ischemia-reperfusion (I/R) injury, which imposes mortality and economic burden. This study aimed to elucidate the cross-talk of endoplasmic reticulum (ER) stress and mitochondrial perturbations in renal I/R-induced liver injury, and the potential hepatoprotective effect of azilsartan (AZL).Methods: Male albino Wister rats were pre-treated with AZL (3 mg/kg/day, PO) for 7 days then a bilateral renal I/R or sham procedure was performed. Activities of liver enzymes were assessed in plasma. The structure and ultra-structure of hepatocytes were assessed by light and electron microscopy. Markers of ER stress, mitochondrial biogenesis and apoptosis were analyzed in livers of rats.Results: Renal ischemic rats showed higher plasma levels of liver enzymes than sham-operated rats, coupled with histological and ultra-structural alterations in hepatocytes. Mechanistically, there was up-regulation of ER stress markers and suppression of mitochondrial biogenesis-related proteins and enhanced apoptosis in livers of renal ischemic rats. These abnormalities were almost abrogated by AZL pretreatment.Discussion: Our findings uncovered the involvement of mitochondrial perturbations, ER stress and apoptosis in liver injury following renal I/R, and suggested AZL as a preconditioning strategy to ameliorate remote liver injury in patients susceptible to renal I/R after adequate clinical testing.


Subject(s)
Benzimidazoles , Kidney Diseases , Oxadiazoles , Reperfusion Injury , Humans , Rats , Male , Animals , Ischemia , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Liver/metabolism , Reperfusion , Apoptosis , Endoplasmic Reticulum Stress
6.
Indian J Microbiol ; 63(4): 632-644, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38034905

ABSTRACT

Surface-growing antibiotic-resistant pathogenic Salmonella is emerging as a global health challenge due to its high economic loss in the poultry industry. Their pathogenesis, increasing antimicrobial resistance, and biofilm formation make them challenging to treat with traditional therapy. The identification of antimicrobial herbal ingredients may provide valuable solutions to solve this problem. Therefore, our aim is to evaluate the potency of nano garlic as the  alternative of choice against multidrug-resistant (MDR) Salmonella isolates using disc diffusion and microdilution assays. Then, checkerboard titration in trays was applied, and FIC was measured to identify the type of interaction between the two antimicrobials. A disc diffusion assay revealed that neomycin was the drug of choice. The range of nano garlic MIC was 12.5-25 µg/ml, while the neomycin MIC range was 32-64 µg/ml. The FIC index established a synergistic association between the two tested drugs in 85% of isolates. An experimental model was used including nano garlic and neomycin alone and in combination against Salmonella infection. The combination therapy significantly improved body productivity and inhibited biofilm formation by more than 50% down regulating the CsgBAD, motB, and sipA operons, which are responsible for curli fimbriae production and biofilm formation in Salmonella serotypes.

8.
BMC Microbiol ; 23(1): 300, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872476

ABSTRACT

BACKGROUND: Urinary tract infections represent one of the most frequent hospital and community-acquired infections with uropathogenic Escherichia coli (UPEC) being the main causative agent. The global increase in the emergence of multidrug-resistant (MDR) UPEC necessitates exploring novel approaches. Repurposing natural products as anti-quorum sensing (QS) agents to impede bacterial virulence is gaining momentum nowadays. Hence, this study investigates the anti-QS potentials of carvacrol, cinnamaldehyde, and eugenol against E. coli isolated from urine cultures of Egyptian patients. RESULTS: Antibiotic susceptibility testing was performed for 67 E. coli isolates and 94% of the isolates showed MDR phenotype. The usp gene was detected using PCR and accordingly, 45% of the isolates were categorized as UPEC. Phytochemicals, at their sub-inhibitory concentrations, inhibited the swimming and twitching motilities of UPEC isolates, with eugenol showing the highest inhibitory effect. The agents hindered the biofilm-forming ability of the tested isolates, at two temperature sets, 37 and 30 °C, where eugenol succeeded in significantly inhibiting the biofilm formation by > 50% at both investigated temperatures, as compared with untreated controls. The phytochemicals were shown to downregulate the expression of the QS gene (luxS) and critical genes related to motility, asserting their anti-QS potential. Further, the combinatory activity of the phytoproducts with five antibiotics was assessed by checkerboard assay. The addition of the phytoproducts significantly reduced the minimum inhibitory concentrations of the antibiotics and generated several synergistic or partially synergistic combinations, some of which have not been previously explored. CONCLUSIONS: Overall, carvacrol, cinnamaldehyde, and eugenol could be repurposed as potential anti-QS agents, which preferentially reduce the QS-based communication and attenuate the cascades of gene expression, thus decreasing the production of virulence factors in UPEC, and eventually, subsiding their pathogenicity. Furthermore, the synergistic combinations of these agents with antibiotics might provide a new perspective to circumvent the side effects brought about by high antibiotic doses, thereby paving the way for overcoming antibiotic resistance.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Eugenol/pharmacology , Eugenol/therapeutic use , Egypt , Anti-Bacterial Agents/chemistry , Virulence Factors/genetics , Virulence Factors/metabolism , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology
9.
World J Microbiol Biotechnol ; 39(12): 335, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37807011

ABSTRACT

The present study aimed to isolate Pasteurella multocida (P. multocida) from pulmonary cases in several avian species and then investigate the histopathological features, antimicrobial resistance determinants, virulence characteristics, and risk factors analysis of the isolates in each species in correlation with epidemiological mapping of pasteurellosis in Sharkia Governorate, Egypt. The obtained data revealed a total occurrence of 9.4% (30/317) of P. multocida among the examined birds (chickens, ducks, quails, and turkeys). The incidence rate was influenced by avian species, climate, breed, age, clinical signs, and sample type. Antimicrobial susceptibility testing revealed that all isolates were sensitive to florfenicol and enrofloxacin, while 86.6 and 73.3% of the isolates displayed resistance to amoxicillin-clavulanic acid and erythromycin, respectively. All of the P. multocida isolates showed a multiple-drug resistant pattern with an average index of 0.43. Molecular characterization revealed that the oma87, sodA, and ptfA virulence genes were detected in the all examined P. multocida isolates. The ermX (erythromycin), blaROB-1 (ß-lactam), and mcr-1(colistin) resistance genes were present in 60, 46.6, and 40% of the isolates, respectively. Ducks and quails were the most virulent and harbored species of antimicrobial-resistant genes. These results were in parallel with postmortem and histopathological examinations which detected more severe interstitial pneumonia lesions in the trachea and lung, congestion, and cellular infiltration especially in ducks. Epidemiological mapping revealed that the Fakous district was the most susceptible to pasteurellosis infection. Thus, farmers are recommended to monitor their flocks for signs of respiratory disease, seek veterinary care promptly if any birds are sick, and avoid the random usage of antibiotics. In conclusion, this study presents a comprehensive picture of the risk factors in correlation to the pathognomonic characteristics of P. multocida infection in poultry sectors to help in developing more effective strategies for prevention and control.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Animals , Pasteurella multocida/genetics , Egypt/epidemiology , Chickens , Pasteurella Infections/epidemiology , Pasteurella Infections/veterinary , Anti-Bacterial Agents/pharmacology , Erythromycin/pharmacology
10.
Ann Clin Microbiol Antimicrob ; 22(1): 82, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689686

ABSTRACT

BACKGROUND: Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin resistance in such a lethal pathogen. METHODS: Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms. RESULTS: Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were detected. Extended-spectrum ß-lactamase- and carbapenemase-producers accounted for 94.12% of the population, with blaCTX-M-15, blaNDM-5, and blaOXA-48 reaching 64.71%, 82.35%, and 82.35%, respectively. Chromosomal alterations in mgrB (82.35%) were the most prevailing colistin resistance-associated genetic change followed by deleterious mutations in ArnT (23.53%, L54H and G164S), PmrA (11.76%, G53V and D86E), PmrB (11.76%, T89P and T134P), PmrC (11.76%, S257L), PhoQ (5.88%, L322Q and Q435H), and ArnB (5.88%, G47D) along with the acquisition of mcr-1.1 by a single isolate of ST525. CONCLUSIONS: In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging to the emerging high-risk clone ST525.


Subject(s)
Colistin , Klebsiella pneumoniae , Humans , Colistin/pharmacology , Egypt , Klebsiella pneumoniae/genetics , Genomics , Intensive Care Units
11.
J Adv Vet Anim Res ; 10(2): 211-221, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37534083

ABSTRACT

Objectives: Ducks suffer a huge economic loss as a result of infections with Pasteurella multocida and Riemerella anatipestifer, which cause high morbidity and mortality. Because these pathogens induce similar clinical symptoms when coinfections occur, it is very difficult to differentiate between them based just on clinical signs. Hence, these major pathogens must be quickly and accurately detected. Materials and Methods: A total of 104 birds ranging from 2 days to 4 weeks old were collected from Egyptian farms, and the outcomes were compared statistically. Conventional cultural identification procedures and a direct multiplex polymerase chain reaction assay were utilized to recognize both pathogens in a single tube reaction simultaneously. Then, the obtained isolates were characterized phenotypically and genotypically. Results: Clinical signs appear at 2-4 weeks of age with respiratory distress (dyspnea), white fluid feces, and stunting. The scrutinized data demonstrated a significantly higher detection rate by PCR directly compared to classical culture procedures. Pasteurella multocida was detected only by PCR. The disc diffusion technique against ten antibiotics showed absolute susceptibilities to amikacin, doxycycline, and florfenicol. High levels of beta-lactam resistance were observed. Riemerella anatipestifer isolates were screened for pathogenicity and plasmid-borne blaTEM genes. All six isolates harbored five virulence genes: aspC, RA46, m28, pstS, and Nlp/P60. Moreover, blaTEM was identified into four isolates and deposited to GenBank with accession numbers OP347083, OP347084, OP347085, and OP347086. Conclusion: These results suggest advanced PCR assays can be applied to the field for rapid and valuable diagnosis of two significant pathogens and focus on the worth of ducks in the propagation of transferable antibiotic resistance genes into the environment.

12.
Antioxidants (Basel) ; 12(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37627483

ABSTRACT

Amoxicillin/clavulanate (Co-Amox), a commonly used antibiotic for the treatment of bacterial infections, has been associated with drug-induced liver damage. Quercetin (QR), a naturally occurring flavonoid with pleiotropic biological activities, has poor water solubility and low bioavailability. The objective of this work was to produce a more bioavailable formulation of QR (liposomes) and to determine the effect of its intraperitoneal pretreatment on the amelioration of Co-Amox-induced liver damage in male rats. Four groups of rats were defined: control, QR liposomes (QR-lipo), Co-Amox, and Co-Amox and QR-lipo. Liver injury severity in rats was evaluated for all groups through measurement of serum liver enzymes, liver antioxidant status, proinflammatory mediators, and microbiota modulation. The results revealed that QR-lipo reduced the severity of Co-Amox-induced hepatic damage in rats, as indicated by a reduction in serum liver enzymes and total liver antioxidant capacity. In addition, QR-lipo upregulated antioxidant transcription factors SIRT1 and Nrf2 and downregulated liver proinflammatory signatures, including IL-6, IL-1ß, TNF-α, NF-κB, and iNOS, with upregulation in the anti-inflammatory one, IL10. QR-lipo also prevented Co-Amox-induced gut dysbiosis by favoring the colonization of Lactobacillus, Bifidobacterium, and Bacteroides over Clostridium and Enterobacteriaceae. These results suggested that QR-lipo ameliorates Co-Amox-induced liver damage by targeting SIRT1/Nrf2/NF-κB and modulating the microbiota.

13.
Animals (Basel) ; 13(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37508114

ABSTRACT

Caseous lymphadenitis (CLA) is a bacterial infection caused by Corynebacterium pseudotuberculosis (C. pseudotuberculosis) that affects sheep and goats, leading to abscess formation in their lymph nodes. The present study aimed to isolate and identify C. pseudotuberculosis from CLA in smallholder sheep and goats, and determine the resistance patterns, virulence, and resistance genes of the isolates. Additionally, genotypic and phylogenetic analysis of the isolates was conducted using ERIC-PCR and DNA sequencing techniques. A cross-sectional study examined 220 animals (130 sheep and 90 goats) from 39 smallholder flocks for clinical signs of CLA. Fifty-four (24.54%) animals showed CLA-compatible lesions, confirmed by C. pseudotuberculosis isolation and PCR identification. Sheep had a lower infection rate of CLA (18.46%) compared with goats (33.3%). Antimicrobial susceptibility testing of 54 C. pseudotuberculosis isolates to 24 antimicrobial drugs revealed that they were 100% resistant to bacitracin and florfenicol, while none of the isolates were resistant to norfloxacin. A high resistance rate was observed for penicillin and erythromycin (92.6% each). Interestingly, 16.7% of C. pseudotuberculosis isolates recovered from sheep showed vancomycin resistance. Molecular characterization of C. pseudotuberculosis isolates revealed that PLD, PIP, and FagA virulence genes were present in all examined isolates. However, the FagB, FagC, and FagD genes were detected in 24 (100%), 20 (83%), and 18 (75%) of the sheep isolates, and 26 (87%), 26 (87%), and 18 (60%) of the goat isolates, respectively. The ß-lactam resistance gene was present in all isolates. Furthermore, 83% of the sheep isolates carried the aminoglycoside (aph(3″)-lb), chloramphenicol (cat1), and bacitracin (bcrA) resistance genes. Among the isolates recovered from goats, 73% were found to contain macrolides (ermX), sulfonamide (sul1), and bacitracin (bcrA) resistance genes. It is worrisome that the glycopeptide (vanA) resistance gene was detected in 8% of the sheep isolates as a first report. ERIC-PCR genotyping of 10 multi-drug-resistant C. pseudotuberculosis isolates showed a high similarity index of 83.6% between isolates from sheep and goats. Nucleotide sequence analysis of partial 16S rRNA sequences of C. pseudotuberculosis revealed 98.83% similarity with biovar Ovis of globally available reference sequences on the Genbank database. Overall, our findings might indicate that C. pseudotuberculosis infection in smallholders in Egypt might be underestimated despite the significant financial impact on animal husbandry and potential health hazards it poses. Moreover, this study highlights the importance of implementing a sustainable control strategy and increasing knowledge and awareness among smallholder breeders to mitigate the economic impact of CLA.

14.
Article in English | MEDLINE | ID: mdl-37277569

ABSTRACT

The extensive use of antimicrobial agents in broiler farms causes the emergence of antimicrobial resistance of E. coli producing severe economic losses to the poultry industry; therefore, monitoring the transmission of ESBL E. coli is of great significance throughout broiler farms. For this reason, we investigated the efficiency of competitive exclusion (CE) products to control the excretion and transmission of ESBL-producing E. coli in broiler chickens. Three hundred samples from 100 broiler chickens were screened for the incidence of E. coli by standard microbiological techniques. The overall isolation percentage was 39% and differentiated serologically into ten different serotypes: O158, O128, O125, O124, O91, O78, O55, O44, O2, and O1. The isolates represented absolute resistance to ampicillin, cefotaxime, and cephalexin. The effectiveness of CE (commercial probiotic product; Gro2MAX) on ESBL-producing E. coli (O78) isolate transmission and excretion was studied in vivo. The results showed that the CE product has interesting properties, making it an excellent candidate for targeted drug delivery by inhibiting bacterial growth and downregulating biofilm, adhesins, and toxin-associated genes loci. The histopathological findings demonstrated the capability of CE in repairing internal organ tissues. Our outcomes suggested that the administration of CE (probiotic products) in broiler farms could be a safe and alternative approach to control the transmission of ESBL-producing virulent E. coli in broiler chickens.

15.
Nat Prod Commun ; 18(5)2023 May.
Article in English | MEDLINE | ID: mdl-37292146

ABSTRACT

Docetaxel (DTX) is the treatment of choice for metastatic castration-resistant prostate cancer. However, developing drug resistance is a significant challenge for achieving effective therapy. This study evaluated the anticancer and synergistic effects on DTX of four natural compounds (calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin) using PC-3 androgen-resistant human prostate cancer cells. We utilized the CellTiter-Glo® luminescent cell viability assay and human PC-3 androgen-independent prostate cancer cells to determine the antiproliferative effects of the four compounds alone and combined with DTX. Cytotoxicity to normal human prostate epithelial cells was tested in parallel using normal immortalized human prostate epithelial cells (RWPE-1). We used cell imaging and quantitative caspase-3 activity to determine whether these compounds induce apoptosis. We also measured the capacity of each drug to inhibit TNF-α-induced NF-kB using a colorimetric assay. Our results showed that all four natural compounds significantly augmented the toxicity of DTX to androgen-resistant PC-3 prostate cancer cells at IC50. Interestingly, when used alone, each of the four compounds had a higher cytotoxic activity to PC-3 than DTX. Mechanistically, these compounds induced apoptosis, which we confirmed by cell imaging and caspase-3 colorimetric assays. Further, when used either alone or combined with DTX, the four test compounds inhibited TNF-α-induced NF-kB production. More significantly, the cytotoxic effects on normal immortalized human prostate epithelial cells were minimal and non-significant, suggesting prostate cancer-specific effects. In conclusion, the combination of DTX with the four test compounds could effectively enhance the anti-prostate cancer activity of DTX. This combination has the added value of reducing the DTX effective concentration. We surmise that calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin were all excellent drug candidates that produced significant antiproliferative activity when used alone and synergistically enhanced the anticancer effect of DTX. Further in vivo studies using animal models of prostate cancer are needed to confirm our in vitro findings.

16.
J Clin Exp Hepatol ; 13(3): 428-436, 2023.
Article in English | MEDLINE | ID: mdl-37250877

ABSTRACT

Background: Hepatic fibrosis is a major health issue that might lead to hepatic cirrhosis and cancer. One of its main causes is cholestasis, which has been stimulated by bile duct ligation (BDL) to block the bile flow from the liver. As for the treatment, lactoferrin (LF), the iron-binding glycoprotein, has been evaluated in various studies for the treatment of infections, inflammation, and cancer. The current study aims to investigate the curative effects of LF on BDL-induced hepatic fibrosis in rats. Methods: Rats were randomly allocated into 4 groups: (1) Control sham, (2) BDL: that have been subjected to a surgery of BDL, (3) BDL + LF: 14 days later after surgery; they have been subjected to LF treatment (300 mg/kg/day, po) for two weeks, and (4) LF group has been administered (300 mg/kg/day, po) for two weeks. Results: BDL elevated inflammatory markers (tumor necrosis factor-alpha and interleukin -1beta (IL-1ß) by 635% and 250% (P ≤ 0.05), respectively, as sham group), beside it decreased the anti-inflammatory cytokine, interleukin- 10 (IL-10) by 47.7% (P ≤ 0.05) as sham group, causing inflammation, and fibrosis of the liver by the up-regulation of transforming growth factor-beta 1 (TGF-ß1)/Smad2/α-smooth muscle actin (SMA) signaling pathway. LF treatment ameliorated these effects through its anti-inflammatory action (it significantly decreased tumor necrosis factor-alpha and IL-1ß by 166% and 159% (P ≤ 0.05), respectively, as sham group, while increased IL-10 by 86.8% (P ≤ 0.05), as sham group) and anti-fibrotic effect by the down-regulation of TGF-ß1/Smad2/α-SMA signaling pathway. These results were confirmed by histopathological examination. Conclusion: lactoferrin shows promising results for the treatment of hepatic fibrosis via attenuating the TGF-ß1/Smad2/α-SMA pathway and through its properties.

17.
3 Biotech ; 13(6): 181, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37193331

ABSTRACT

The experiment was designed to validate the effect of Artemisia annua and its novel commercial product (Navy Cox) on the control of necrotic enteritis (NE). A total of one hundred forty broiler chicks were randomly distributed into seven equal groups: G1, control negative; G2, infected with Eimeria (day 15) and C. perfringens (day 19); G3, treated with Navy Cox before challenge; G4, treated with Artemisia before challenge; G5, infected and then treated with Navy Cox; G6, infected and then treated with Artemisia; and G7, infected and treated with amoxicillin. Chicken response and immune organ indicants were recorded during the observation period (4 weeks). Whole blood and serum samples were collected for immunological evaluation, and tissue samples were collected for bacterial counts and estimation of mRNA expression of genes encoding apoptosis, tight junctions, and immunity. Chickens in the infected group revealed a significant decrease in RBCS, HB, PCV% total protein, Lysozyme, and nitric oxide activity in addition to leukocytosis, heterophilia, monocytosis, increase in cortisol, interleukins, and malondialdehyde. Treated groups displayed lower lesions, colony-forming units, and no mortality. Concurrently, a complete blood profile, antioxidants, and immune markers showed significant improvements. The mRNA expression levels of CASP, CLDN-1, OCLN, TJPI, MUC2, and cell-mediated immune response genes (p < 0.0001) were significantly alleviated in the treated groups compared with the challenged counterpart. This is the first-ever report on the efficacy valuation of Navy Cox compared to standard antibiotic treatment of clostridial NE. Navy Cox proved remarkable capability to minimize C. perfringens colonization in broiler intestines, modulation of mucus production, gut health integrity, immune organs, and immune response when used as a prophylactic agent in this form or naturally as Artemisia.

18.
BMC Microbiol ; 23(1): 122, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138240

ABSTRACT

BACKGROUND: Probiotics and their derived postbiotics, as cell-free supernatants (CFS), are gaining a solid reputation owing to their prodigious health-promoting effects. Probiotics play a valuable role in the alleviation of various diseases among which are infectious diseases and inflammatory disorders. In this study, three probiotic strains, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Pediococcus acidilactici, were isolated from marketed dietary supplements. The antimicrobial activity of the isolated probiotic strains as well as their CFS was investigated. The neutralized CFS of the isolated probiotics were tested for their antibiofilm potential. The anti-inflammatory activity of the isolated Lactobacillus spp., together with their CFS, was studied in the carrageenan-induced rat paw edema model in male Wistar rats. To the best of our knowledge, such a model was not previously experimented to evaluate the anti-inflammatory activity of the CFS of probiotics. The histopathological investigation was implemented to assess the anti-inflammatory prospect of the isolated L. plantarum and L. rhamnosus strains as well as their CFS. RESULTS: The whole viable probiotics and their CFS showed variable growth inhibition of the tested indicator strains using the agar overlay method and the microtiter plate assay, respectively. When tested for virulence factors, the probiotic strains were non-hemolytic lacking both deoxyribonuclease and gelatinase enzymes. However, five antibiotic resistance genes, blaZ, ermB, aac(6')- aph(2"), aph(3'')-III, and vanX, were detected in all isolates. The neutralized CFS of the isolated probiotics exhibited an antibiofilm effect as assessed by the crystal violet assay. This effect was manifested by hindering the biofilm formation of the tested Staphylococcus aureus and Pseudomonas aeruginosa clinical isolates in addition to P. aeruginosa PAO1 strain. Generally, the cell cultures of the two tested probiotics moderately suppressed the acute inflammation induced by carrageenan compared to indomethacin. Additionally, the studied CFS relatively reduced the inflammatory changes compared to the inflammation control group but less than that observed in the case of the probiotic cultures treated groups. CONCLUSIONS: The tested probiotics, along with their CFS, showed promising antimicrobial and anti-inflammatory activities. Thus, their safety and their potential use as biotherapeutics for bacterial infections and inflammatory conditions are worthy of further investigation.


Subject(s)
Anti-Infective Agents , Probiotics , Male , Rats , Animals , Carrageenan , Rats, Wistar , Probiotics/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation
19.
Ann Med Surg (Lond) ; 85(4): 676-683, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37113930

ABSTRACT

About 50% of acute appendicitis cases are atypical in their presentation. The objectives of this study was to assess and compare the feasibility of clinical scores [Alvarado and Appendicitis Inflammatory Response (AIR)] and imaging [ultrasound and abdominopelvic computed tomography (CT) scan] in the evaluation of equivocal cases of acute appendicitis in a clinical trial to identify that subset of patients who really need and will benefit from imaging, mainly CT scan. Methods: A total of 286 consecutive adult patients with suspected acute appendicitis were included. The clinical scores, including Alvarado and AIR scores and ultrasound, were done for all patients. Abdominal and pelvic CT scans were done for 192 patients to resolve the diagnosis of acute appendicitis. The sensitivity, specificity, positive and negative predictive values, and accuracy rate of both clinical scores and imaging (ultrasound and CT scan) were compared. The final histopathology was used as the gold standard for which the diagnostic feasibility of the clinical score and imaging were compared. Results: Out of 286 total patients who presented with right lower quadrant abdominal pain, a presumptive diagnosis of acute appendicitis was made in 211 patients (123 males and 88 females) after thorough clinical evaluation, clinical scores, and imaging, and they were submitted to appendicectomy. The overall prevalence of acute appendicitis proved by histopathology as a gold standard was 89.1% (188 patients) with a negative appendectomy rate of 10.9%. Simple acute appendicitis was reported in 165 (78.2%) patients and perforated appendicitis in 23 (10.9%) patients. For patients with equivocal clinical scores (≥4 to ≤6), the sensitivity, specificity, predictive values, and accuracy rate of CT scan were significantly higher than those of Alvarado and AIR scores. Patients with low clinical scores (≤4) and high clinical scores (≥7), the sensitivity, specificity, predictive values, and accuracy rate of clinical scores and imaging were comparable. The diagnostic feasibility of AIR scores was significantly higher than the Alvarado score, and the clinical scores were associated with significantly higher diagnostic accuracy than ultrasound. CT scan is unlikely to be needed and will add little to the diagnosis of acute appendicitis for patients with high clinical scores (≥7). The sensitivity of the CT scan for perforated appendicitis was lower than that for nonperforated appendicitis. The use of CT scans for query cases did not change the negative appendectomy rate. Conclusion: CT scan evaluation is beneficial only for patients with equivocal clinical scores. For patients with high clinical scores, surgery is recommended. AIR score was superior to the Alvarado score in terms of sensitivity, specificity, and predictive values. A CT scan is usually not required for patients with low scores since acute appendicitis is unlikely; in such cases, ultrasound could be of help to exclude other diagnoses.

20.
BMC Musculoskelet Disord ; 24(1): 205, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932362

ABSTRACT

BACKGROUND: Glucocorticoids are used for the treatment of autoimmune disorders; however, they can elicit several side effects such as osteoporosis. Several approaches can be made to treat glucocorticoid-induced osteoporosis, including the use of stem cells. However, the therapeutic effect of mesenchymal stem cells depends on its released factors, including extracellular vesicles. Extracellular vesicles have been recognized as important mediators of intercellular communication as they participate in many physiological processes. The present study was designed to investigate the effect of bone marrow mesenchymal stem cells derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis. METHODS: Thirty adult albino male rats were divided into 3 groups: control group (CG), glucocorticoid-induced osteoporosis (GOG) and extracellular vesicles treated group (ExTG). Rats in the GOG and ExTG groups were injected with methylprednisolone acetate (40 mg/kg) intramuscularly in the quadriceps muscle 3 times per week for three weeks in the early morning. Afterwards, the rats in GOG group received a single vehicle injection (PBS) while each rat in the ExTG group received a single injection of extracellular vesicles (400 µg/kg suspended in 0.2 ml PBS) in the tail vein. Rats were euthanized 1 month after injection. Mandibles were dissected and the molar segments were prepared for histological preparation, scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). RESULTS: Histology and scanning electron microscopyof bone tissue showed alveolar bone loss and bone resorption in the GOG group. while in the ExTG group, alveolar bone demostrated normal bone architecture. EDX showed that calcium percentage in GOG group was lower than ExTG group,which showed no statistically significant difference from the control group. CONCLUSIONS: Extracellular vesicles may be a promising treatment modality in the treatment of bone diseases and in bone regeneration. However, further research is needed before stating that extracellular vesicles s can be used to treat bone disorders especially when translating to humans.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Osteoporosis , Humans , Rats , Animals , Glucocorticoids/adverse effects , Bone and Bones/pathology , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/pathology , Extracellular Vesicles/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...