Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825597

ABSTRACT

The active prokaryotic communities proliferate in the ecosystems of the Antarctic Ocean, participating in biogeochemical cycles and supporting higher trophic levels. They are regulated by several environmental and ecological forcing, such as the characteristics of the water masses subjected to global warming and particulate organic matter (POM). During summer 2017, two polynyas in the Ross Sea were studied to evaluate key-microbiological parameters (the proteasic, glucosidasic, and phosphatasic activities, the microbial respiratory rates, the prokaryotic abundance and biomass) in relation to quantitative and qualitative characteristics of POM. Results showed significant differences in the epipelagic layer between two macro-areas (Terra Nova Bay and Ross Sea offshore area). Proteins and carbohydrates were metabolized rapidly in the offshore area (as shown by turnover times), due to high enzymatic activities in this zone, indicating fresh and labile organic compounds. The lower quality of POM in Terra Nova Bay, as shown by the higher refractory fraction, led to an increase in the turnover times of proteins and carbohydrates. Salinity was the physical constraint that played a major role in the distribution of POM and microbial activities in both areas.

2.
Sci Total Environ ; 670: 982-992, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31018440

ABSTRACT

In coastal lakes the role of microorganisms in driving nutrients regeneration at different water depths and in sediments is not yet fully understood. The dynamics of microbial (algal and bacterial) abundance and bacterial activities involved in organic matter transformation were measured, together with nutrient concentrations, through a microcosm experiment set up using the oligotrophic Faro lake as a study model over a total period of 15 days and with a four-day frequency. Water column at different depths (surface, middle and bottom) and interstitial water obtained by sediment centrifugation were used in appropriate ratios (mixed 1:1 with surface waters) to fill 21-Litre plastic aquaria in order to simulate processes occurring in natural conditions. At early experimental period, the sharp decrease of dissolved organic nutrients and the abundant production of leucine aminopeptidase (LAP) and alkaline phosphatase (AP) in correspondence with high phytoplankton abundance in bottom and interstitial water reflected the relevance of organic nutrients for inorganic nutrients regeneration and phytoplankton growth. Size fractionation of LAP and AP as well as the positive relationship between microbial compartments suggested that bacteria and phytoplankton worked in close reciprocal synergy, and coupling of nitrogen and phosphorus regeneration, especially in bottom and interstitial waters, was observed. At later experimental period, the change in bacterial community, especially the increase of filamentous shaped cells, together with a simultaneous increase of protozoan abundance indicated that nutrient replenishment made the microbial loop structure more competitive. In oligotrophic conditions, such as those in Faro lake, organic nutrient enrichment of bottom and interstitial waters was associated with changes in the bacterial community, with consequent stimulation of extracellular enzymes to support phytoplankton growth. Nutrient availability from microbial regeneration resulted in an increased complexity of the microbial loop structure, with bacteria and phytoplankton adopting specific strategies to respond to the changing environment.


Subject(s)
Eutrophication , Lakes/chemistry , Phytoplankton/metabolism , Water Pollutants, Chemical/analysis , Bacteria/metabolism , Lakes/microbiology , Nitrogen/analysis , Phosphorus/analysis , Sicily
3.
Crit Rev Microbiol ; 42(6): 883-904, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26585708

ABSTRACT

The EU Marine Strategy Framework Directive 2008/56/EC (MSFD) defines a framework for Community actions in the field of marine environmental policy in order to achieve and/or maintain the Good Environmental Status (GES) of the European seas by 2020. Microbial assemblages (from viruses to microbial-sized metazoa) provide a major contribution to global biodiversity and play a crucial role in the functioning of marine ecosystems, but are largely ignored by the MSFD. Prokaryotes are only seen as "microbial pathogens," without defining their role in GES indicators. However, structural or functional prokaryotic variables (abundance, biodiversity and metabolism) can be easily incorporated into several MSFD descriptors (i.e. D1. biodiversity, D4. food webs, D5. eutrophication, D8. contaminants and D9. contaminants in seafood) with beneficial effects. This review provides a critical analysis of the current MSFD descriptors and illustrates the reliability and advantages of the potential incorporation of some prokaryotic variables within the set of indicators of marine environmental quality. Following a cost/benefit analysis against scientific and economic criteria, we conclude that marine microbial components, and particularly prokaryotes, are highly effective for detecting the effects of anthropogenic pressures on marine environments and for assessing changes in the environmental health status. Thus, we recommend the inclusion of these components in future implementations of the MSFD.


Subject(s)
Bacteria/classification , Seawater/microbiology , Seawater/virology , Viruses/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Europe , Oceans and Seas , Phylogeny , Viruses/genetics , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...