Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Water Environ Res ; 96(5): e11039, 2024 May.
Article in English | MEDLINE | ID: mdl-38787335

ABSTRACT

This explorative study was aimed at first characterizing the sponge Spongilla lacustris (Linnaeus, 1759) from the sub-Arctic Pasvik River (Northern Fennoscandia), in terms of associated microbial communities and pollutant accumulation. Persistent organic pollutants were determined in sponge mesohyl tissues, along with the estimation of the microbial enzymatic activity rates, prokaryotic abundance and morphometric traits, and the analysis of the taxonomic bacterial diversity by next-generation sequencing techniques. The main bacterial groups associated with S. lacustris were Alphaproteobacteria and Gammaproteobacteria, followed by Chloroflexi and Acidobacteria. The structure of the S. lacustris-associated bacterial communities was in sharp contrast to those of the bacterioplankton, being statistically close to those found in sediments. Dieldrin was measured at higher concentrations in the sponge tissues (3.1 ± 0.4 ng/g) compared to sediment of the same site (0.04 ± 0.03 ng/g). Some taxonomic groups were possibly related to the occurrence of certain contaminants, as was the case of Patescibacteria and dieldrin. Obtained results substantially contribute to the still scarce knowledge of bacterial community diversity, activities, and ecology in freshwater sponges. PRACTITIONER POINTS: Microbial community associated with Spongilla lacustris is probably shaped by the occurrence of certain contaminants, mainly dieldrin and heavy metals. A higher accumulation of dieldrin in the sponge mesohyl tissues than in sediment was determined. S. lacustris is suggested as sponge species to be used as a sentinel of pesticide pollution in the Pasvik River. S. lacustris, living in tight contact with soft substrates, harbored communities more similar to sediment than water communities.


Subject(s)
Bacteria , Porifera , Rivers , Water Pollutants, Chemical , Animals , Porifera/microbiology , Rivers/chemistry , Rivers/microbiology , Water Pollutants, Chemical/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Microbiota , Environmental Monitoring
2.
J Fungi (Basel) ; 9(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37998900

ABSTRACT

We assessed fungal diversity in water and sediment samples obtained from five Arctic lakes in Ny-Ålesund (Svalbard Islands, High Arctic) and five Antarctic lakes on Livingston and Deception Islands (South Shetland Islands), using DNA metabarcoding. A total of 1,639,074 fungal DNA reads were detected and assigned to 5980 ASVs amplicon sequence variants (ASVs), with only 102 (1.7%) that were shared between the two Polar regions. For Arctic lakes, unknown fungal taxa dominated the sequence assemblages, suggesting the dominance of possibly undescribed fungi. The phylum Chytridiomycota was the most represented in the majority of Arctic and Antarctic samples, followed by Rozellomycota, Ascomycota, Basidiomycota, and the less frequent Monoblepharomycota, Aphelidiomycota, Mortierellomycota, Mucoromycota, and Neocallimastigomycota. At the genus level, the most abundant genera included psychrotolerant and cosmopolitan cold-adapted fungi including Alternaria, Cladosporium, Cadophora, Ulvella (Ascomycota), Leucosporidium, Vishniacozyma (Basidiomycota), and Betamyces (Chytridiomycota). The assemblages displayed high diversity and richness. The assigned diversity was composed mainly of taxa recognized as saprophytic fungi, followed by pathogenic and symbiotic fungi.

3.
Sci Total Environ ; 904: 167244, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37758135

ABSTRACT

Monitoring the occurrence of microplastic contamination in the Antarctic area is the key to implement policy measures for waste regulations in the research stations. Antarctic fish Trematomus bernachii is a suitable species for establishing microplastic contamination and for investigating changes over time in the concentration and type of microplastics in the Antarctic region. In this paper a total of 78 fish, caught during the 37th Italian Antarctic expedition (2021-2022) in the Ross Sea (Antarctica) were analysed. Different microfibers and dyes were identified by Raman spectroscopy and the results were compared with those obtained for fish sampled in 1998. Differences in polymer type emerged with a predominance of synthetic fibers with respect to natural ones. These changes appear to be related to the increased human activities in the Antarctica over the last twenty years and highlights the need to improve the environmental sustainability of the numerous research stations operating throughout that area.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Humans , Microplastics , Plastics/analysis , Antarctic Regions , Bays , Fishes , Environmental Monitoring/methods , Birds , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 902: 166043, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37544451

ABSTRACT

Different marine sponge species from Tethys Bay, Antarctica, were analyzed for contamination by polyester and polyamide microplastics (MPs). The PISA (Polymer Identification and Specific Analysis) procedure was adopted as it provides, through depolymerization and HPLC analysis, highly sensitive mass-based quantitative data. The study focused on three analytes resulting from the hydrolytic depolymerization of polyesters and polyamides: terephthalic acid (TPA), 6-aminohexanoic acid (AHA), and 1-6-hexanediamine (HMDA). TPA is a comonomer found in the polyesters poly(ethylene terephthalate) (PET) and poly(butylene adipate co terephthalate) (PBAT), and in polyamides such as poly(1,4-p-phenylene terephthalamide) (Kevlar™ and Twaron™ fibers) and poly(hexamethylene terephthalamide) (nylon 6 T). AHA is the monomer of nylon 6. HMDA is a comonomer of the aliphatic nylon 6,6 (HMDA-co-adipic acid) and of semi-aromatic polyamides such as, again, nylon 6 T (HMDA-co-TPA). Except for the biodegradable PBAT, these polymers exhibit high to extreme mechanical, thermal and chemical resistance. Indeed, they are used as technofibers in protective clothing able to withstand extreme conditions as those typical of Antarctica. Of the two amine monomers, only HMDA was found above the limit of quantification, and only in specimens of Haliclona (Rhizoniera) scotti, at a concentration equivalent to 27 µg/kg of nylon 6,6 in the fresh sponge. Comparatively higher concentrations, corresponding to 2.5-4.1 mg/kg of either PBAT or PPTA, were calculated from the concentration of TPA detected in all sponge species. Unexpectedly, TPA did not originate from PET (the most common textile fiber) as it was detected in the acid hydrolysate, whereas the PISA procedure results in effective PET depolymerization only under alkaline conditions. The obtained results showed that sponges, by capturing and concentrating MPs from large volumes of filtered marine waters, may be considered as effective indicators of the level and type of pollution by MPs and provide early warnings of increasing levels of pollution even in remote areas.


Subject(s)
Plastics , Porifera , Animals , Environmental Biomarkers , Nylons , Antarctic Regions , Polyesters , Microplastics
5.
Microorganisms ; 11(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37110442

ABSTRACT

A new understanding of plankton ecology has been obtained by studying the phenotypic traits of free-living prokaryotes in the Sicily Channel (Central Mediterranean Sea), an area characterised by oligotrophic conditions. During three cruises carried out in July 2012, January 2013 and July 2013, the volume and morphology of prokaryotic cells were assessed microscopically using image analysis in relation to environmental conditions. The study found significant differences in cell morphologies among cruises. The largest cell volumes were observed in the July 2012 cruise (0.170 ± 0.156 µm3), and the smallest in the January 2013 cruise (0.060 ± 0.052 µm3). Cell volume was negatively limited by nutrients and positively by salinity. Seven cellular morphotypes were observed among which cocci, rods and coccobacilli were the most abundant. Cocci, although they prevailed numerically, always showed the smallest volumes. Elongated shapes were positively related to temperature. Relationships between cell morphologies and environmental drivers indicated a bottom-up control of the prokaryotic community. The morphology/morphometry-based approach is a useful tool for studying the prokaryotic community in microbial ecology and should be widely applied to marine microbial populations in nature.

6.
Front Microbiol ; 14: 1078382, 2023.
Article in English | MEDLINE | ID: mdl-36846806

ABSTRACT

Microbial communities inhabiting the Antarctic Ocean show psychrophilic and halophilic adaptations conferring interesting properties to the enzymes they produce, which could be exploited in biotechnology and bioremediation processes. Use of cold- and salt-tolerant enzymes allows to limit costs, reduce contaminations, and minimize pretreatment steps. Here, we report on the screening of 186 morphologically diverse microorganisms isolated from marine biofilms and water samples collected in Terra Nova Bay (Ross Sea, Antarctica) for the identification of new laccase activities. After primary screening, 13.4 and 10.8% of the isolates were identified for the ability to oxidize 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and the dye azure B, respectively. Amongst them, the marine Halomonas sp. strain M68 showed the highest activity. Production of its laccase-like activity increased six-fold when copper was added to culture medium. Enzymatic activity-guided separation coupled with mass spectrometry identified this intracellular laccase-like protein (named Ant laccase) as belonging to the copper resistance system multicopper oxidase family. Ant laccase oxidized ABTS and 2,6-dimethoxy phenol, working better at acidic pHs The enzyme showed a good thermostability, with optimal temperature in the 40-50°C range and maintaining more than 40% of its maximal activity even at 10°C. Furthermore, Ant laccase was salt- and organic solvent-tolerant, paving the way for its use in harsh conditions. To our knowledge, this is the first report concerning the characterization of a thermo- and halo-tolerant laccase isolated from a marine Antarctic bacterium.

7.
Sci Total Environ ; 869: 161847, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36709890

ABSTRACT

Microplastic (MP) pollution is of great environmental concern. MPs have been found all over the Earth, including in the poles, which is indicative for the important threat they constitute. Yet, while the ocean is object of major interest, the data available in the literature about MP pollution in the freshwaters of the Earth's poles are still limited. Here, we review the current knowledge of MP pollution in the freshwaters of the Arctic, Antarctica and Third Pole, and we assess its ecological implications. This review highlights the presence of MPs in the lakes, rivers, snow, and glaciers of the investigated sites, questions the transport patterns through which MPs reach these remote areas, and illustrates that MP pollution is a real problem not only in marine systems, but also in the freshwater environments of the Earth's poles. MPs can indeed be ingested by animals and can physically damage their digestive tracts, as well as escalate the trophic levels. MPs can also alter microbial communities by serving as surfaces onto which microbes can grow and develop, and can enhance ice melting when trapped in glaciers. Hence, considered the limited data available, we encourage more research on the theme.

8.
Sci Rep ; 12(1): 17214, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241682

ABSTRACT

Anthropogenic microparticles (AMs) were found for the first time in specimens of Trematomus bernacchii collected in 1998 in the Ross Sea (Antarctica) and stored in the Antarctic Environmental Specimen Bank. Most of the identified AMs were fibers of natural and synthetic origin. The natural AMs were cellulosic, the synthetic ones were polyester, polypropylene, polypropylene/polyester, and cellulose acetate. The presence of dyes in the natural AMs indicates their anthropogenic origin. Five industrial dyes were identified by Raman spectroscopy with Indigo occurring in most of them (55%). Our research not only adds further data to the ongoing knowledge of pollution levels in the Antarctic ecosystem, it provides an interesting snapshot of the past, highlighting that microplastics and anthropogenic fiber pollution had already entered the Antarctic marine food web at the end of the '90 s. These findings therefore establish the foundations for understand the changes in marine litter pollution over time.


Subject(s)
Ecosystem , Perciformes , Animals , Antarctic Regions , Birds , Coloring Agents , Indigo Carmine , Microplastics , Plastics , Polyesters , Polypropylenes
9.
Microorganisms ; 10(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36144355

ABSTRACT

The evaporation of a localized, highly saline water body of the Boulder Clay debris-covered glacier, in the Northern Victoria Land, probably generated the accumulation of mirabilite (Na2SO4 × 10H2O) and thenardite (Na2SO4) in a glacier salt-cone. Such an extremely cold and salty environment resembles the conditions on Mars, so it can be considered a terrestrial analog. The study was aimed at gaining a first glimpse at the prokaryotic community associated with Antarctic mirabilite and thenardite minerals and also to find clues about the origin of the salts. For this purpose, samples were analyzed by a next generation approach to investigate the prokaryotic (Bacteria and Archaea) diversity. Phylogenetic analysis allowed the identification of Bacteroidota, Actinobacteriota, Firmicutes, and Gammaproteobacteria as the main bacterial lineages, in addition to Archaea in the phylum Halobacterota. The genera Arthrobacter, Rhodoglobus, Gillisia, Marinobacter and Psychrobacter were particularly abundant. Interestingly, several bacterial and archaeal sequences were related to halotolerant and halophilic genera, previously reported in a variety of marine environments and saline habitats, also in Antarctica. The analyzed salt community also included members that are believed to play a major role in the sulfur cycle.

10.
Microorganisms ; 10(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35630464

ABSTRACT

The Pasvik River experiences chemical, physical, and biological stressors due to the direct discharges of domestic sewage from settlements located within the catchment and runoff from smelter and mine wastes. Sediments, as a natural repository of organic matter and associated contaminants, are of global concern for the possible release of pollutants in the water column, with detrimental effects on aquatic organisms. The present study was aimed at characterizing the riverine benthic microbial community and evaluating its ecological role in relation to the contamination level. Sediments were sampled along the river during two contrasting environmental periods (i.e., beginning and ongoing phases of ice melting). Microbial enzymatic activities, cell abundance, and morphological traits were evaluated, along with the phylogenetic community composition. Amplified 16S rRNA genes from bacteria were sequenced using a next-generation approach. Sediments were also analyzed for a variety of chemical features, namely particulate material characteristics and concentration of polychlorobiphenyls, polycyclic aromatic hydrocarbons, and pesticides. Riverine and brackish sites did not affect the microbial community in terms of main phylogenetic diversity (at phylum level), morphometry, enzymatic activities, and abundance. Instead, bacterial diversity in the river sediments appeared to be influenced by the micro-niche conditions, with differences in the relative abundance of selected taxa. In particular, our results highlighted the occurrence of bacterial taxa directly involved in the C, Fe, and N cycles, as well as in the degradation of organic pollutants and toxic compounds.

11.
Microorganisms ; 11(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36677350

ABSTRACT

Five psychrotolerant Alcanivorax spp. strains were isolated from Antarctic coastal waters. Strains were screened for molecular and physiological properties and analyzed regarding their growth capacity. Partial 16S rDNA, alk-B1, and P450 gene sequencing was performed. Biolog EcoPlates and the API 20E test were used to evaluate metabolic and biochemical profiles. Bacterial growth in sodium acetate was determined at 4, 15, 20, and 25 °C to evaluate the optimal temperature. Furthermore, the ability of each strain to grow in a hydrocarbon mixture at 4 and 25 °C was assayed. Biosurfactant production tests (drop-collapse and oil spreading) and emulsification activity tests (E24) were also performed. Concerning results of partial gene sequencing (16S rDNA, alk-B1, and P450), a high similarity of the isolates with the same genes isolated from other Alcanivorax spp. strains was observed. The metabolic profiles obtained by Biolog assays showed no significant differences in the isolates compared to the Alcanivorax borkumensis wild type. The results of biodegradative tests showed their capability to grow at different temperatures. All strains showed biosurfactant production and emulsification activity. Our findings underline the importance to proceed in the isolation and characterization of Antarctic hydrocarbon-degrading bacterial strains since their biotechnological and environmental applications could be useful even for pollution remediation in polar areas.

12.
Astrobiology ; 21(5): 551-565, 2021 05.
Article in English | MEDLINE | ID: mdl-33524277

ABSTRACT

The genomic diversity of bacteria and archaea in brines (BC1, BC2, and BC3) from two adjacent and perennially frozen Antarctic lakes (L16 and L-2) in the Boulder Clay (BC) area was investigated together with the metabolically active fraction of both communities, by analyzing the bulk rRNA as a general marker of metabolic activity. Although similar bacterial and archaeal assemblages were observed at phylum level, differences were encountered when considering the distribution in species. Overall, the total bacterial communities were dominated by Bacteroidetes. A massive occurrence of flavobacterial sequences was observed within the metabolically active bacterial communities of the BC1 brine, whereas the active fractions in BC2 and BC3 strongly differed from the bulk communities being dominated by Betaproteobacteria (mainly Hydrogenophaga members). The BC lakes also hosted sequences of the most thermally tolerant archaea, also related to well-known hyperthermophiles. Interestingly, RNA sequences of the hyperthermophilic genus Ferroglobus were retrieved in all brine samples. Finally, a high abundance of the strictly anaerobic methanogens (such as Methanosarcina members) within the active community suggests that anoxic conditions might occur in the lake brines. Our findings indicate perennially ice-covered Antarctic lakes as plausible terrestrial candidates for the study of the potential for extant life on different bodies of our solar system.


Subject(s)
Ice Cover , Lakes , Antarctic Regions , Archaea/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Salts
13.
Curr Microbiol ; 77(11): 3414-3421, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32740715

ABSTRACT

The peculiar biotechnological applications of Oleispira spp. in the natural cleansing of oil-polluted marine systems stimulated the study of the phenotypic characteristics of the Oleispira antarctica RB-8(T) strain and modifications of these characteristics in relation to different growth conditions. Bacterial abundance, cell size and morphology variations (by image analysis) and hydrocarbon degradation (by gas chromatography with flame ionization detection, GC-FID) were analysed in different cultures of O. antarctica RB-8(T). The effects of six different hydrocarbon mixtures (diesel, engine oil, naval oil waste, bilge water, jet fuel and oil) used as a single carbon source combined with two different growth temperatures (4° and 15 °C) were analysed (for 22 days). The data obtained showed that the mean cell volume decreased with increasing experimental temperature. Three morphological bacterial shapes were identified: spirals, rods and cocci. Morphological transition from spiral to rod and coccoid shapes in relation to the different substrates (oil mixtures) and/or growth temperatures was observed, except for one experimental condition (naval oil waste) in which spiral bacteria were mostly dominant. Phenotypic traits and physiological status of hydrocarbon-degrading bacteria showed important modifications in relation to culture conditions. These findings suggest interesting potential for strain RB-8(T) for ecological and applicative purposes.


Subject(s)
Oceanospirillaceae , Bacteria/genetics , Biodegradation, Environmental , Biological Variation, Population
14.
Microorganisms ; 8(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825597

ABSTRACT

The active prokaryotic communities proliferate in the ecosystems of the Antarctic Ocean, participating in biogeochemical cycles and supporting higher trophic levels. They are regulated by several environmental and ecological forcing, such as the characteristics of the water masses subjected to global warming and particulate organic matter (POM). During summer 2017, two polynyas in the Ross Sea were studied to evaluate key-microbiological parameters (the proteasic, glucosidasic, and phosphatasic activities, the microbial respiratory rates, the prokaryotic abundance and biomass) in relation to quantitative and qualitative characteristics of POM. Results showed significant differences in the epipelagic layer between two macro-areas (Terra Nova Bay and Ross Sea offshore area). Proteins and carbohydrates were metabolized rapidly in the offshore area (as shown by turnover times), due to high enzymatic activities in this zone, indicating fresh and labile organic compounds. The lower quality of POM in Terra Nova Bay, as shown by the higher refractory fraction, led to an increase in the turnover times of proteins and carbohydrates. Salinity was the physical constraint that played a major role in the distribution of POM and microbial activities in both areas.

15.
Environ Microbiol ; 22(8): 3463-3477, 2020 08.
Article in English | MEDLINE | ID: mdl-32510727

ABSTRACT

A perennially frozen lake at Boulder Clay site (Victoria Land, Antarctica), characterized by the presence of frost mounds, have been selected as an in situ model for ecological studies. Different samples of permafrost, glacier ice and brines have been studied as a unique habitat system. An additional sample of brines (collected in another frozen lake close to the previous one) was also considered. Alpha- and beta-diversity of fungal communities showed both intra- and inter-cores significant (p < 0.05) differences, which suggest the presence of interconnection among the habitats. Therefore, the layers of frost mound and the deep glacier could be interconnected while the brines could probably be considered as an open habitat system not interconnected with each other. Moreover, the absence of similarity between the lake ice and the underlying permafrost suggested that the lake is perennially frozen based. The predominance of positive significant (p < 0.05) co-occurrences among some fungal taxa allowed to postulate the existence of an ecological equilibrium in the habitats systems. The positive significant (p < 0.05) correlation between salt concentration, total organic carbon and pH, and some fungal taxa suggests that a few abiotic parameters could drive fungal diversity inside these ecological niches.


Subject(s)
Fungi/classification , Ice Cover/microbiology , Permafrost/microbiology , Antarctic Regions , Clay , Ecosystem , Fungi/genetics , Ice Cover/chemistry , Lakes/chemistry , Lakes/microbiology , Mycobiome , Organic Chemicals/analysis , Permafrost/chemistry , Salinity , Salts/analysis
16.
Microorganisms ; 8(6)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486118

ABSTRACT

The diversity and biotechnological potentialities of bacterial isolates from brines of three Antarctic lakes of the Northern Victoria Land (namely Boulder Clay and Tarn Flat areas) were first explored. Cultivable bacterial communities were analysed mainly in terms of bacterial response to contaminants (i.e., antibiotics and heavy metals) and oxidation of contaminants (i.e., aliphatic and aromatic hydrocarbons and polychlorobiphenyls). Moreover, the biosynthesis of biomolecules (antibiotics, extracellular polymeric substances and enzymes) with applications for human health and environmental protection was assayed. A total of 74 and 141 isolates were retrieved from Boulder Clay and Tarn Flat brines, respectively. Based on 16S rRNA gene sequence similarities, bacterial isolates represented three phyla, namely Proteobacteria (i.e., Gamma- and Alphaproteobacteria), Bacteroidetes and Actinobacteria, with differences encountered among brines. At genus level, Rhodobacter, Pseudomonas, Psychrobacter and Leifsonia members were dominant. Results obtained from this study on the physiological and enzymatic features of cold-adapted isolates from Antarctic lake brines provide interesting prospects for possible applications in the biotechnological field through future targeted surveys. Finally, findings on contaminant occurrence and bacterial response suggest that bacteria might be used as bioindicators for tracking human footprints in these remote polar areas.

17.
Chemosphere ; 251: 126229, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32171943

ABSTRACT

This paper reports briefly the concentrations of major elements of 3116 samples of lakes in the Victoria Land region. The data obtained by different works were processed through multivariate chemometric techniques to gain insight into the biogeochemical processes taking place in the lacustrine systems. Antarctic ice-free areas contain lakes and ponds that have interesting chemical features and are of wide global significance as early warning indicators of climatic and environmental change.


Subject(s)
Environmental Monitoring , Lakes/chemistry , Antarctic Regions
18.
Microorganisms ; 7(9)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505750

ABSTRACT

Two distinct pressurized hypersaline brine pockets (named TF4 and TF5), separated by a thin ice layer, were detected below an ice-sealed Antarctic lake. Prokaryotic (bacterial and archaeal) diversity, abundances (including virus-like particles) and metabolic profiles were investigated by an integrated approach, including traditional and new-generation methods. Although similar diversity indices were computed for both Bacteria and Archaea, distinct bacterial and archaeal assemblages were observed. Bacteroidetes and Gammaproteobacteria were more abundant in the shallowest brine pocket, TF4, and Deltaproteobacteria, mainly represented by versatile sulphate-reducing bacteria, dominated in the deepest, TF5. The detection of sulphate-reducing bacteria and methanogenic Archaea likely reflects the presence of a distinct synthrophic consortium in TF5. Surprisingly, members assigned to hyperthermophilic Crenarchaeota and Euryarchaeota were common to both brines, indicating that these cold habitats host the most thermally tolerant Archaea. The patterns of microbial communities were different, coherently with the observed microbiological diversity between TF4 and TF5 brines. Both the influence exerted by upward movement of saline brines from a sub-surface anoxic system and the possible occurrence of an ancient ice remnant from the Ross Ice Shelf were the likely main factors shaping the microbial communities.

19.
Sci Total Environ ; 670: 982-992, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31018440

ABSTRACT

In coastal lakes the role of microorganisms in driving nutrients regeneration at different water depths and in sediments is not yet fully understood. The dynamics of microbial (algal and bacterial) abundance and bacterial activities involved in organic matter transformation were measured, together with nutrient concentrations, through a microcosm experiment set up using the oligotrophic Faro lake as a study model over a total period of 15 days and with a four-day frequency. Water column at different depths (surface, middle and bottom) and interstitial water obtained by sediment centrifugation were used in appropriate ratios (mixed 1:1 with surface waters) to fill 21-Litre plastic aquaria in order to simulate processes occurring in natural conditions. At early experimental period, the sharp decrease of dissolved organic nutrients and the abundant production of leucine aminopeptidase (LAP) and alkaline phosphatase (AP) in correspondence with high phytoplankton abundance in bottom and interstitial water reflected the relevance of organic nutrients for inorganic nutrients regeneration and phytoplankton growth. Size fractionation of LAP and AP as well as the positive relationship between microbial compartments suggested that bacteria and phytoplankton worked in close reciprocal synergy, and coupling of nitrogen and phosphorus regeneration, especially in bottom and interstitial waters, was observed. At later experimental period, the change in bacterial community, especially the increase of filamentous shaped cells, together with a simultaneous increase of protozoan abundance indicated that nutrient replenishment made the microbial loop structure more competitive. In oligotrophic conditions, such as those in Faro lake, organic nutrient enrichment of bottom and interstitial waters was associated with changes in the bacterial community, with consequent stimulation of extracellular enzymes to support phytoplankton growth. Nutrient availability from microbial regeneration resulted in an increased complexity of the microbial loop structure, with bacteria and phytoplankton adopting specific strategies to respond to the changing environment.


Subject(s)
Eutrophication , Lakes/chemistry , Phytoplankton/metabolism , Water Pollutants, Chemical/analysis , Bacteria/metabolism , Lakes/microbiology , Nitrogen/analysis , Phosphorus/analysis , Sicily
20.
Arch Environ Contam Toxicol ; 77(2): 291-307, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30982081

ABSTRACT

Anthropogenic impact over the Pasvik River (Arctic Norway) is mainly caused by emissions from runoff from smelter and mine wastes, as well as by domestic sewage from the Russian, Norwegian, and Finnish settlements situated on its catchment area. In this study, sediment samples from sites within the Pasvik River area with different histories of metal input were analyzed for metal contamination and occurrence of metal-resistant bacteria in late spring and summer of 2014. The major differences in microbial and chemical parameters were mostly dependent on local inputs than seasonality. Higher concentrations of metals were generally detected in July rather than May, with inner stations that became particularly enriched in Cr, Ni, Cu, and Zn, but without significant differences. Bacterial resistance to metals, which resulted from viable counts on amended agar plates, was in the order Ni2+>Pb2+>Co2+>Zn2+>Cu2+>Cd2+>Hg2+, with higher values that were generally determined at inner stations. Among a total of 286 bacterial isolates (mainly achieved from Ni- and Pb-amended plates), the 7.2% showed multiresistance at increasing metal concentration (up to 10,000 ppm). Selected multiresistant isolates belonged to the genera Stenotrophomonas, Arthrobacter, and Serratia. Results highlighted that bacteria, rapidly responding to changing conditions, could be considered as true indicators of the harmful effect caused by contaminants on human health and environment and suggested their potential application in bioremediation processes of metal-polluted cold sites.


Subject(s)
Bacteria/drug effects , Drug Resistance, Bacterial , Geologic Sediments/microbiology , Metals/pharmacology , Arctic Regions , Bacteria/isolation & purification , Environmental Monitoring/methods , Metals/analysis , Norway , Phylogeny , Rivers , Seasons , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...