Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(12): 113458, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37995184

ABSTRACT

Innate immune memory, also called "trained immunity," is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.


Subject(s)
Acid Ceramidase , Trained Immunity , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Histones , Lysine , Sphingolipids/genetics , Immunity, Innate
2.
Nat Biomed Eng ; 7(9): 1097-1112, 2023 09.
Article in English | MEDLINE | ID: mdl-37291433

ABSTRACT

Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.


Subject(s)
Interleukin-4 , Sepsis , Humans , Animals , Mice , Interleukin-4/metabolism , Trained Immunity , Monocytes
3.
Cell ; 186(7): 1398-1416.e23, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36944331

ABSTRACT

CD3δ SCID is a devastating inborn error of immunity caused by mutations in CD3D, encoding the invariant CD3δ chain of the CD3/TCR complex necessary for normal thymopoiesis. We demonstrate an adenine base editing (ABE) strategy to restore CD3δ in autologous hematopoietic stem and progenitor cells (HSPCs). Delivery of mRNA encoding a laboratory-evolved ABE and guide RNA into a CD3δ SCID patient's HSPCs resulted in a 71.2% ± 7.85% (n = 3) correction of the pathogenic mutation. Edited HSPCs differentiated in artificial thymic organoids produced mature T cells exhibiting diverse TCR repertoires and TCR-dependent functions. Edited human HSPCs transplanted into immunodeficient mice showed 88% reversion of the CD3D defect in human CD34+ cells isolated from mouse bone marrow after 16 weeks, indicating correction of long-term repopulating HSCs. These findings demonstrate the preclinical efficacy of ABE in HSPCs for the treatment of CD3δ SCID, providing a foundation for the development of a one-time treatment for CD3δ SCID patients.


Subject(s)
Severe Combined Immunodeficiency , T-Lymphocytes , Humans , Animals , Mice , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Gene Editing , Mice, SCID , CD3 Complex , Receptors, Antigen, T-Cell/genetics
4.
ACS Appl Bio Mater ; 4(2): 1432-1440, 2021 02 15.
Article in English | MEDLINE | ID: mdl-34337346

ABSTRACT

The field of photodynamic therapy (PDT) has continued to show promise as a potential method for treating tumors. In this work a photosensitizer (PS) has been delivered to cancer cell lines for PDT by incorporation into the metal-organic framework (MOF) as an organic linker. By functionalizing the surface of MOF nanoparticles with maltotriose the PS can efficiently target cancer cells with preferential uptake into pancreatic and breast cancer cell lines. Effective targeting overcomes some current problems with PDT including long-term photosensitivity and tumor specificity. Developing a PS with optimal absorption and stability is one of the foremost challenges in PDT and the synthesis of a chlorin which is activated by long-wavelength light and is resistant to photo-bleaching is described. This chlorin-based MOF shows anti-cancer ability several times higher than that of porphyrin-based MOFs with little toxicity to normal cell lines and no dark toxicity.


Subject(s)
Organometallic Compounds/chemistry , Pancreatic Neoplasms/therapy , Photochemotherapy , Porphyrins/chemistry , Triple Negative Breast Neoplasms/therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Delivery Systems , Humans , Molecular Structure , Nanostructures
5.
Adv Ther (Weinh) ; 3(8)2020 Aug.
Article in English | MEDLINE | ID: mdl-33072859

ABSTRACT

Herein, we report a nano-MOF conjugated to maltotriose as a new DDS. MA-PCN-224-0.1Mn/0.9Zn showed its ability to target cancer and TAM. This novel MOF is an effective PDT agent and shows little dark toxicity, MA-PCN-224-0.1Mn/0.9Zn uptakes selectively into cancer cells. A well-suited size control methodology was used so that the nano-scaled MOFs may take advantage of the EPR effect. This development of a nano-scale MOF for PDT that is conjugated to a cancer targeting ligand represents a meaningful development for the use of MOFs as drug delivery systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...