Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Microbiol ; 79: 102481, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38677076

ABSTRACT

Extensive coevolution has led to utterly intricate interactions between phages and their bacterial hosts. While both the (short-term) intracellular molecular host-subversion mechanisms during a phage infection cycle and the (long-term) mutational arms race between phages and host cells have traditionally received a lot of attention, there has been an underestimating neglect of (mid-term) transmission strategies by which phages manage to cautiously spread throughout their host population. However, recent findings underscore that phages encode mechanisms to avoid host cell scarcity and promote coexistence with the host, giving the impression that some phages manage to 'farm' their host population to ensure access to host cells for lytic consumption. Given the tremendous impact of phages on bacterial ecology, charting and understanding the complexity of such transmission strategies is of key importance.

2.
Biochem Biophys Res Commun ; 681: 291-297, 2023 11 12.
Article in English | MEDLINE | ID: mdl-37801778

ABSTRACT

Mycophage endolysins are highly diverse and modular enzymes composed of domains involved in peptidoglycan binding and degradation. Mostly, they are characterized by a three-module design: an N-terminal peptidase domain, a central catalytic domain and a C-terminal peptidoglycan binding domain. Previously, the affinity of cell wall binding domains (CBDs) to the mycobacterial peptidoglycan layer was shown for some of these endolysins. In this study, an in depth screening was performed on twelve mycophage endolysins. The discovered CBDs were characterized for their binding affinity to Mycobacterium (M.) bovis bacille Calmette-Guérin (BCG), a largely unexplored target and an attenuated strain of M. bovis, responsible for bovine tuberculosis. Using homology-based annotation, only four endolysins showed the presence of a known peptidoglycan binding domain, the previously characterized pfam 01471 domain. However, analysis of the secondary structure aided by AlphaFold predictions revealed the presence of a C-terminal domain in the other endolysins. These were hypothesized as new, uncharacterized CBDs. Fusion proteins composed of these domains linked to GFP were constructed and positively assayed for their affinity to M. bovis BCG in a peptidoglycan binding assay. Moreover, two CBDs were able to fluorescently label M. bovis BCG in milk samples, highlighting the potential to further explore their possibility to function as CBD-based diagnostics.


Subject(s)
Mycobacterium bovis , Peptidoglycan , Peptidoglycan/metabolism , Mycobacterium bovis/metabolism , Endopeptidases/metabolism , Cell Wall/metabolism
3.
Cell Rep ; 39(6): 110804, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545039

ABSTRACT

Temperate bacterial viruses are commonly thought to favor vertical (lysogenic) transmission over horizontal (lytic) transmission when the virion-to-host-cell ratio is high and available host cells become scarce. In P22-infected Salmonella Typhimurium populations, however, we find that host subpopulations become lytically consumed despite high phage-to-host ratios that would normally favor lysogeny. These subpopulations originate from the proliferation of P22-free siblings that spawn off from P22-carrier cells from which they cytoplasmically inherit P22-borne superinfection exclusion factors (SEFs). In fact, we demonstrate that the gradual dilution of these SEFs in the growing subpopulation of P22-free siblings restricts the number of incoming phages, thereby imposing the perception of a low phage-to-host ratio that favors lytic development. Although their role has so far been neglected, our data indicate that phage-borne SEFs can spur complex infection dynamics and a history-dependent switch from vertical to horizontal transmission in the face of host-cell scarcity.


Subject(s)
Bacteriophages , Superinfection , Humans , Lysogeny , Salmonella typhimurium
4.
Int J Mol Sci ; 23(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35163175

ABSTRACT

Many phage genes lack sequence similarity to any other open reading frame (ORF) in current databases. These enigmatic ORFan genes can have a tremendous impact on phage propagation and host interactions but often remain experimentally unexplored. We previously revealed a novel interaction between phage P22 and its Salmonella Typhimurium host, instigated by the ORFan gene pid (for phage P22 encoded instigator of dgo expression) and resulting in derepression of the host dgoRKAT operon. The pid gene is highly expressed in phage carrier cells that harbor a polarly located P22 episome that segregates asymmetrically among daughter cells. Here, we discovered that the pid locus is fitted with a weak promoter, has an exceptionally long 5' untranslated region that is instructive for a secondary pid mRNA species, and has a 3' Rho-independent termination loop that is responsible for stability of the pid transcript.


Subject(s)
Bacteriophage P22/genetics , Gene Expression Regulation, Viral/genetics , Bacteriophages/genetics , Gene Expression/genetics , Open Reading Frames/genetics , Operon , Promoter Regions, Genetic/genetics , Salmonella Phages/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/virology
5.
AMB Express ; 9(1): 109, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31312915

ABSTRACT

Biological activated carbon (BAC) filters are frequently used in drinking water production for removing dissolved organic carbon (DOC) via adsorption of organic compounds and microbial degradation. However, proper methods are still missing to distinguish the two processes. Here, we introduce reverse stable isotope labelling (RIL) for assessing microbial activity in BAC filters. We incubated BAC samples from three different BAC filters (two granular activated carbon- and one extruded activated carbon-based) in a buffer amended with 13C-labelled bicarbonate. By monitoring the release of 12C-CO2 from the mineralization of DOC, we could demonstrate the successful application of RIL in analysing microbial DOC degradation during drinking water treatment. Changing the water flow rates through BAC filters did not alter the microbial activities, even though apparent DOC removal efficiencies changed accordingly. Microbial DOC degradation activities quickly recovered from backwashing which was applied for removing particulate impurities and preventing clogging. The size distributions of activated carbon particles led to vertical stratification of microbial activities along the filter beds. Our results demonstrate that reverse isotope labelling is well suited to measure microbial DOC degradation on activated carbon particles, which provides a basis for improving operation and design of BAC filters.

6.
Environ Sci Technol ; 51(20): 11876-11883, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28903553

ABSTRACT

Assessing the biodegradation of organic compounds is a frequent question in environmental science. Here, we present a sensitive, inexpensive, and simple approach to monitor microbial mineralization using reverse stable isotope labeling analysis (RIL) of dissolved inorganic carbon (DIC). The medium for the biodegradation assay contains regular organic compounds and 13C-labeled DIC with 13C atom fractions (x(13C)DIC) higher than natural abundance (typically 2-50%). The produced CO2 (x(13C) ≈ 1.11%) gradually dilutes the initial x(13C)DIC allowing to quantify microbial mineralization using mass-balance calculations. For 13C-enriched CO2 samples, a newly developed isotope ratio mid-infrared spectrometer was introduced with a precision of x(13C) < 0.006%. As an example for extremely difficult and slowly degradable compounds, CO2 production was close to the theoretical stoichiometry for anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Furthermore, we could measure the aerobic degradation of dissolved organic carbon (DOC) adsorbed to granular activated carbon in a drinking water production plant, which cannot be labeled with 13C. Thus, the RIL approach can be applied to sensitively monitor biodegradation of various organic compounds under anoxic or oxic conditions.


Subject(s)
Carbon Isotopes , Isotope Labeling , Biodegradation, Environmental , Carbon , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...