Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Genet ; 47(6): 377-84, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20522426

ABSTRACT

BACKGROUND Genome-wide screening of large patient cohorts with mental retardation using microarray-based comparative genomic hybridisation (array-CGH) has recently led to identification several novel microdeletion and microduplication syndromes. METHODS Owing to the national array-CGH network funded by the French Ministry of Health, shared information about patients with rare disease helped to define critical intervals and evaluate their gene content, and finally determine the phenotypic consequences of genomic array findings. RESULTS In this study, nine unrelated patients with overlapping de novo interstitial microdeletions involving 4q21 are reported. Several major features are common to all patients, including neonatal muscular hypotonia, severe psychomotor retardation, marked progressive growth restriction, distinctive facial features and absent or severely delayed speech. The boundaries and the sizes of the nine deletions are different, but an overlapping region of 1.37 Mb is defined; this region contains five RefSeq genes: PRKG2, RASGEF1B, HNRNPD, HNRPDL and ENOPH1. DISCUSSION Adding new individuals with similar clinical features and 4q21 deletion allowed us to reduce the critical genomic region encompassing two genes, PRKG2 and RASGEF1B. PRKG2 encodes cGMP-dependent protein kinase type II, which is expressed in brain and in cartilage. Information from genetically modified animal models is pertinent to the clinical phenotype. RASGEF1B is a guanine nucleotide exchange factor for Ras family proteins, and several members have been reported as key regulators of actin and microtubule dynamics during both dendrite and spine structural plasticity. CONCLUSION Clinical and molecular delineation of 4q21 deletion supports a novel microdeletion syndrome and suggests a major contribution of PRKG2 and RASGEF1B haploinsufficiency to the core phenotype.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 4/genetics , Growth Disorders/pathology , Intellectual Disability/pathology , Language Development Disorders/pathology , Abnormalities, Multiple/pathology , Adolescent , Child , Child, Preschool , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Comparative Genomic Hybridization , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Syndrome , Young Adult
2.
Nature ; 463(7281): 671-5, 2010 Feb 04.
Article in English | MEDLINE | ID: mdl-20130649

ABSTRACT

Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western 'obesogenic' environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the 'common disease, common variant' hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) >or= 40 kg m(-2) or BMI standard deviation score >or= 4; P = 6.4 x 10(-8), odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the 'power of the extreme' in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 16/genetics , Obesity/genetics , Obesity/physiopathology , Penetrance , Adolescent , Adult , Age of Onset , Aging , Body Mass Index , Case-Control Studies , Child , Cognition Disorders/complications , Cognition Disorders/genetics , Cohort Studies , Europe , Female , Genome-Wide Association Study , Heterozygote , Humans , Inheritance Patterns/genetics , Male , Mutation/genetics , Obesity/complications , Reproducibility of Results , Sex Characteristics , Young Adult
3.
Pathol Biol (Paris) ; 55(1): 13-8, 2007 Feb.
Article in French | MEDLINE | ID: mdl-16697120

ABSTRACT

Chromosomal aberrations are the first cause of mental impairment and dysmorphism. Rearrangements involving large chromosomal segments can be detected by standard chromosome analysis using GTG-banding, but this technique is not suited for the detection of small chromosome abnormalities. Array comparative genomic hybridisation (array-CGH) is a method used to detect segmental DNA copy number alterations. Recently, advances in this technology have enabled high-resolution examination for identifying genetic alterations and copy number variations on a genome-wide scale. This review describes the current genomic array platforms and CGH methodologies and highlights their applications for studying constitutional disease.


Subject(s)
Chromosome Disorders/genetics , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Chromosome Disorders/diagnosis , DNA Probes , Gene Dosage , Humans , Nucleic Acid Hybridization/methods , Oligonucleotide Array Sequence Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL