Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Virus Evol ; 10(1): veae022, 2024.
Article in English | MEDLINE | ID: mdl-38617843

ABSTRACT

Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.

2.
PeerJ ; 11: e16022, 2023.
Article in English | MEDLINE | ID: mdl-37842065

ABSTRACT

Background: Broad-scale monitoring of arthropods is often carried out with passive traps (e.g., Malaise traps) that can collect thousands of specimens per sample. The identification of individual specimens requires time and taxonomic expertise, limiting the geographical and temporal scale of research and monitoring studies. DNA metabarcoding of bulk-sample homogenates has been found to be faster, efficient and reliable, but the destruction of samples prevents a posteriori validation of species occurrences and relative abundances. Non-destructive metabarcoding of DNA extracted from collection medium has been applied in a limited number of studies, but further tests of efficiency are required with different trap types and collection media to assess the consistency of the method. Methods: We quantified the detection rate of arthropod species when applying non-destructive DNA metabarcoding with a short (127-bp) fragment of mitochondrial COI on two combinations of passive traps and collection media: (1) water with monopropylene glycol (H2O-MPG) used in window-flight traps (WFT, 53 in total); (2) ethanol with monopropylene glycol (EtOH-MPG) used in Malaise traps (MT, 27 in total). We then compared our results with those obtained for the same samples using morphological identification (for WFTs) or destructive metabarcoding of bulk homogenate (for MTs). This comparison was applied as part of a larger study of arthropod species richness in silver fir (Abies alba Mill., 1759) stands across a range of climate-induced tree dieback levels and forest management strategies. Results: Of the 53 H2O-MPG samples from WFTs, 16 produced no metabarcoding results, while the remaining 37 samples yielded 77 arthropod MOTUs in total, of which none matched any of the 343 beetle species morphologically identified from the same traps. Metabarcoding of 26 EtOH-MPG samples from MTs detected more arthropod MOTUs (233) than destructive metabarcoding of homogenate (146 MOTUs, 8 orders), of which 71 were shared MOTUs, though MOTU richness per trap was similar between treatments. While we acknowledge the failure of metabarcoding from WFT-derived collection medium (H2O-MPG), the treatment of EtOH-based Malaise trapping medium remains promising. We conclude however that DNA metabarcoding from collection medium still requires further methodological developments and cannot replace homogenate metabarcoding as an approach for arthropod monitoring. It can be used nonetheless as a complementary treatment when enhancing the detection of soft-bodied arthropods like spiders and Diptera.


Subject(s)
Biodiversity , Diptera , Animals , DNA Barcoding, Taxonomic/methods , DNA/genetics , Diptera/genetics , Ethanol , Glycols
3.
Nat Commun ; 14(1): 4160, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443157

ABSTRACT

Infectious protein crystals are an essential part of the viral lifecycle for double-stranded DNA Baculoviridae and double-stranded RNA cypoviruses. These viral protein crystals, termed occlusion bodies or polyhedra, are dense protein assemblies that form a crystalline array, encasing newly formed virions. Here, using X-ray crystallography we determine the structure of a polyhedrin from Nudiviridae. This double-stranded DNA virus family is a sister-group to the baculoviruses, whose members were thought to lack occlusion bodies. The 70-year-old sample contains a well-ordered lattice formed by a predominantly α-helical building block that assembles into a dense, highly interconnected protein crystal. The lattice is maintained by extensive hydrophobic and electrostatic interactions, disulfide bonds, and domain switching. The resulting lattice is resistant to most environmental stresses. Comparison of this structure to baculovirus or cypovirus polyhedra shows a distinct protein structure, crystal space group, and unit cell dimensions, however, all polyhedra utilise common principles of occlusion body assembly.


Subject(s)
Nudiviridae , Baculoviridae/genetics , Viral Proteins/metabolism
4.
J Virol ; 96(13): e0052422, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35678601

ABSTRACT

Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.


Subject(s)
Nudiviridae , Viral Transcription , Wasps , Animals , DNA, Viral/genetics , Nudiviridae/genetics , Viral Replicase Complex Proteins , Wasps/virology
5.
J Invertebr Pathol ; 189: 107718, 2022 03.
Article in English | MEDLINE | ID: mdl-35077776

ABSTRACT

Nudiviruses (Nudiviridae) are double-stranded DNA viruses with enveloped and rod-shaped virions. Several insect orders (e.g., Diptera, Lepidoptera, Coleoptera, Orthoptera) and aquatic crustaceans are susceptible to nudivirus infections, which can result in varied degrees of disease in all developmental host stages. Their pathogenicity endangers insect rearing and crustacean aquacultures, but has also proven effective in biocontrol against Oryctes rhinoceros infestations. This literature review aims to present all known nudivirus species and provide a comprehensive Nudiviridae phylogeny by including recently described nudiviral isolates, and discuss this phylogeny in comparison to current opinions and taxonomical propositions. Moreover, we aim to clarify biological, pathological and genomic differences or similarities between nudiviruses and related entomopathogenic viruses, including baculoviruses (Baculoviridae) and bracoviruses (Polydnaviridae). A phylogenetic analysis using 17 concatenated nudivirus core genes resulted in the expected structure with the genera Alphanudivirus and Betanudivirus, as well as the most recently recognized genera Gammanudivirus and Deltanudivirus. The hymenopteran Osmia cornuta nudivirus (OcNV) groups closest with the hymenopteran Fopius arisanus endogenous nudivirus (FaENV) and does not share a most common ancestor with the hymenopteran bracoviruses. Except for one node, all clades are highly supported. The proposition of a recent study to assign subgroups to the alphanudiviruses might be legitimate, but more hymenopteran and orthopteran nudiviruses, especially in bees and cricket, need to be identified to resolve this proposal. In addition, freshwater and marine nudiviruses might form taxonomic subgroups among gammanudiviruses as well, but more aquatic nudiviruses need to be identified and sequenced for better resolution. Furthermore, the search for nudiviruses in insects with (semi)aquatic life stages may aid in finding the missing link that led to the manifestation of aquatic nudiviruses.


Subject(s)
Coleoptera , Nudiviridae , Polydnaviridae , Animals , Baculoviridae/genetics , Coleoptera/genetics , Genome, Viral , Insecta , Phylogeny , Polydnaviridae/genetics
6.
Commun Biol ; 5(1): 57, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042989

ABSTRACT

Species richness, abundance and biomass of insects have recently undergone marked declines in Europe. We metabarcoded 211 Malaise-trap samples to investigate whether drought-induced forest dieback and subsequent salvage logging had an impact on ca. 3000 species of flying insects in silver fir Pyrenean forests. While forest dieback had no measurable impact on species richness, there were significant changes in community composition that were consistent with those observed during natural forest succession. Importantly, most observed changes were driven by rare species. Variation was explained primarily by canopy openness at the local scale, and the tree-related microhabitat diversity and deadwood amount at landscape scales. The levels of salvage logging in our study did not explain compositional changes. We conclude that forest dieback drives changes in species assemblages that mimic natural forest succession, and markedly increases the risk of catastrophic loss of rare species through homogenization of environmental conditions.


Subject(s)
Biodiversity , Biomass , Forests , Insecta , Animals , Endangered Species , France
7.
Curr Opin Insect Sci ; 49: 93-100, 2022 02.
Article in English | MEDLINE | ID: mdl-34954138

ABSTRACT

Animal genomes commonly contain genes or sequences that have been acquired from different types of viruses. The vast majority of these endogenous virus elements (EVEs) are inactive or consist of only a small number of components that show no evidence of cooption for new functions or interaction. Unlike most EVEs, bracoviruses (BVs), ichnoviruses (IVs) and virus-like particles (VLPs) in parasitoid wasps have evolved through retention and interaction of many genes from virus ancestors. Here, we discuss current understanding of BV, IV and VLP evolution along with associated implications for what constitutes a virus. We suggest that BVs and IVs are domesticated endogenous viruses (DEVs) that differ in several important ways from other known EVEs.


Subject(s)
Polydnaviridae , Viruses , Wasps , Animals , DNA Viruses/genetics , Genome, Viral , Polydnaviridae/genetics , Viruses/genetics , Wasps/genetics
9.
Commun Biol ; 4(1): 104, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483589

ABSTRACT

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Subject(s)
Biological Evolution , Chromosomes, Insect , Genome, Insect , Polydnaviridae/genetics , Wasps/genetics , Animals , Base Sequence , Conserved Sequence , Nudiviridae/genetics , Receptors, Odorant/genetics , Smell , Symbiosis , Synteny , Wasps/virology
10.
Pest Manag Sci ; 76(9): 3199-3207, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32358914

ABSTRACT

BACKGROUND: The olive fruit fly Bactrocera oleae (Rossi) (OLF) is a major agricultural pest, whose control primarily relies on the use of chemical insecticides. Therefore, development of sustainable control strategies is highly desirable. The primary endosymbiotic bacterium of OLF, 'Candidatus Erwinia dacicola', is essential for successful larval development in unripe olive fruits. Therefore, targeting this endosymbiont with antimicrobial compounds may result in OLF fitness reduction and may exert control on natural populations of OLF. RESULTS: Here, we evaluate the impact of compounds with antimicrobial activity on the OLF endosymbiont. Copper oxychloride (CO) and the fungal metabolite viridiol (Vi), produced by Trichoderma spp., were used. Laboratory bioassays were carried out to assess the effect of oral administration of these compounds on OLF fitness and molecular analyses (quantitative polymerase chain reaction) were conducted to measure the load of OLF-associated microorganisms in treated flies. CO and Vi were both able to disrupt the symbiotic association between OLF and its symbiotic bacteria, determining a significant reduction in the endosymbiont and gut microbiota load as well as a decrease in OLF fitness. CO had a direct negative effect on OLF adults. Conversely, exposure to Vi significantly undermined larval development of the treated female's progeny but did not show any toxicity in OLF adults. CONCLUSIONS: These results provide new insights into the symbiotic control of OLF and pave the way for the development of more sustainable strategies of pest control based on the use of natural compounds with antimicrobial activity. © 2020 Society of Chemical Industry.


Subject(s)
Erwinia , Olea , Tephritidae , Animals , Drosophila , Female , Fruit , Symbiosis
11.
J Gen Virol ; 101(1): 3-4, 2020 01.
Article in English | MEDLINE | ID: mdl-31935180

ABSTRACT

Members of the family Nudiviridae are large dsDNA viruses with distinctive rod-shaped nucleocapsids and circular genomes of 96-232 kbp. Nudiviruses have been identified from a diverse range of insects and crustaceans and are closely related to baculoviruses. This is a summary of the International Committee on Taxonomy of Viruses Report on the taxonomy of the family Nudiviridae, which is available at ictv.global/report/nudiviridae.


Subject(s)
Nudiviridae/classification , Nudiviridae/genetics , Animals , Baculoviridae/genetics , Crustacea/virology , Genome, Viral/genetics , Insecta/virology , Virion/genetics
12.
Mol Ecol ; 29(2): 308-324, 2020 01.
Article in English | MEDLINE | ID: mdl-31788887

ABSTRACT

Although mutualistic associations between animals and microbial symbionts are widespread in nature, the mechanisms that have promoted their evolutionary persistence remain poorly understood. A vertical mode of symbiont transmission (from parents to offspring) is thought to ensure partner fidelity and stabilization, although the efficiency of vertical transmission has rarely been investigated, especially in cases where hosts harbour a diverse microbial community. Here we evaluated vertical transmission rates of cellulolytic gut oxymonad and parabasalid protists in the wood-feeding termite Reticulitermes grassei. We sequenced amplicons of the 18S rRNA gene of protists from 24 colonies of R. grassei collected in two populations. For each colony, the protist community was characterized from the gut of 14 swarming reproductives and from a pool of 10 worker guts. A total of 98 operational taxonomic units belonging to 13 species-level taxa were found. The vertical transmission rate was estimated for each protist present in a colony based on its frequency among the reproductives. The results revealed that transmission rates were high, with an average of 0.897 (±0.164) per protist species. Overall, the protist community did not differ between reproductive sexes, suggesting that both the queen and the king could contribute to the gut microbiota of the offspring. A positive relationship between the transmission rate of protists and their prevalence within populations was also detected. However, transmission rates alone do not explain the prevalence of protists. In conclusion, these findings reveal key forces behind a conserved, multispecies mutualism, raising further questions on the roles of horizontal transfer and negative selection in shaping symbiont prevalence.


Subject(s)
Metagenomics/methods , Transcriptome/genetics , DNA Barcoding, Taxonomic/methods , Ecology , Pacific Ocean , Phytoplankton/genetics , Proteostasis/genetics , Proteostasis/physiology
13.
Genome Biol Evol ; 10(7): 1745-1764, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29931159

ABSTRACT

Polydnaviruses (PDVs) are compelling examples of viral domestication, in which wasps express a large set of genes originating from a chromosomally integrated virus to produce particles necessary for their reproductive success. Parasitoid wasps generally use PDVs as a virulence gene delivery system allowing the protection of their progeny in the body of parasitized host. However, in the wasp Venturia canescens an independent viral domestication process led to an alternative strategy as the wasp incorporates virulence proteins in viral liposomes named virus-like particles (VLPs), instead of DNA molecules. Proteomic analysis of purified VLPs and transcriptome sequencing revealed the loss of some viral functions. In particular, the genes coding for capsid components are no longer expressed, which explains why VLPs do not incorporate DNA. Here a thorough examination of V. canescens genome revealed the presence of the pseudogenes corresponding to most of the genes involved in lost functions. This strongly suggests that an accumulation of mutations that leads to gene specific pseudogenization precedes the loss of viral genes observed during virus domestication. No evidence was found for block loss of collinear genes, although extensive gene order reshuffling of the viral genome was identified from comparisons between endogenous and exogenous viruses. These results provide the first insights on the early stages of large DNA virus domestication implicating massive genome reduction through gene-specific pseudogenization, a process which differs from the large deletions described for bacterial endosymbionts.


Subject(s)
Polydnaviridae/genetics , Pseudogenes , Wasps/genetics , Wasps/virology , Animals , DNA, Viral/genetics , Evolution, Molecular , Gene Deletion , Gene Dosage , Genes, Viral , Genome, Insect , Genome, Viral , Virion/genetics
14.
Genes (Basel) ; 8(11)2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29120392

ABSTRACT

Transfer of DNA sequences between species regardless of their evolutionary distance is very common in bacteria, but evidence that horizontal gene transfer (HGT) also occurs in multicellular organisms has been accumulating in the past few years. The actual extent of this phenomenon is underestimated due to frequent sequence filtering of "alien" DNA before genome assembly. However, recent studies based on genome sequencing have revealed, and experimentally verified, the presence of foreign DNA sequences in the genetic material of several species of Lepidoptera. Large DNA viruses, such as baculoviruses and the symbiotic viruses of parasitic wasps (bracoviruses), have the potential to mediate these transfers in Lepidoptera. In particular, using ultra-deep sequencing, newly integrated transposons have been identified within baculovirus genomes. Bacterial genes have also been acquired by genomes of Lepidoptera, as in other insects and nematodes. In addition, insertions of bracovirus sequences were present in the genomes of certain moth and butterfly lineages, that were likely corresponding to rearrangements of ancient integrations. The viral genes present in these sequences, sometimes of hymenopteran origin, have been co-opted by lepidopteran species to confer some protection against pathogens.

15.
Curr Opin Virol ; 25: 41-48, 2017 08.
Article in English | MEDLINE | ID: mdl-28728099

ABSTRACT

In a remarkable example of convergent evolution, several parasitic wasp lineages have independently captured and maintained complex DNA virus machineries, used to transfer virulence factors. Parasitic wasps, which develop inside the larvae of their insect hosts, may inject Polydnaviruses (PDVs) or Virus-Like particles (VLPs), derived from the recurrent endogenization of several large DNA viruses. PDVs evolved from the domestication in braconid and ichneumonid wasps of viruses from different families and function as gene transfer agents. In contrast, the independent domestication of nudiviruses led to the evolution of both PDV and VLP strategies. In Venturia canescens, the endogenous nudivirus has lost the ability to encapsidate DNA, instead VLPs cargo virulence molecules of wasp origin to the parasitized host.


Subject(s)
Evolution, Molecular , Polydnaviridae/genetics , Polydnaviridae/physiology , Wasps/virology , Animals , DNA, Viral , Genome, Viral , Moths/parasitology , Virion/genetics , Virion/physiology , Virulence , Virulence Factors/genetics , Wasps/pathogenicity , Wasps/physiology
16.
J Gen Virol ; 98(2): 284-295, 2017 02.
Article in English | MEDLINE | ID: mdl-28284235

ABSTRACT

Nudiviruses are arthropod-specific large double-stranded circular DNA viruses, related to baculoviruses, which replicate in the nucleus of the cells they infect. To date, six fully sequenced nudiviral genomes are available in databases, and the protein profile from nudivirus particles was mainly characterized by PAGE. However, only a few direct matches have been completed between genomic and proteomic data, with the exception of the major occlusion body protein from Penaeus monodon nudivirus and four nucleocapsid proteins from Helicoverpa zea nudivirus-2. The function of predicted nudiviral proteins is still inferred from what is known from baculoviruses or endogenous nudiviruses (i.e. bracoviruses). Tipula oleracea nudivirus (ToNV) is the causative agent of crane fly nucleopolyhedrosis. Along with Penaeus monodon nudivirus, ToNV is the second fully sequenced nudivirus to be described as forming occlusion bodies. The protein profile revealed by Coomassie-stained SDS-PAGE is very similar to those observed for other nudiviruses, with five major protein bands of about 75, 48, 35, 25 and 12 kDa. Proteomic analysis, using on-line nanoflow liquid chromatography in tandem with high-resolution mass spectrometry, revealed that ToNV occlusion bodies are composed of 52 viral proteins, the most abundant of which are the functional homologue of baculovirus polyhedrin/granulin and the homologues of three Helicoverpa zea nudivirus-2 predicted proteins: the two virion structural proteins 34K (Hz2V052, the baculovirus capsid protein VP39 homologue) and 11K (Hz2V025), and the hypothetical protein Hz2V079, a newly identified nudivirus core gene product.


Subject(s)
Arthropods/virology , Baculoviridae/metabolism , DNA Viruses/metabolism , Penaeidae/virology , Viral Proteins/metabolism , Animals , Arthropods/metabolism , Baculoviridae/genetics , Chromatography, Liquid , DNA Viruses/genetics , DNA, Circular/chemistry , DNA, Circular/metabolism , Electrophoresis, Polyacrylamide Gel , Insect Proteins/metabolism , Mass Spectrometry , Protein Array Analysis , Proteomics , Viral Proteins/analysis , Viral Proteins/genetics
18.
Sci Adv ; 1(10): e1501150, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26702449

ABSTRACT

Relics of ancient infections are abundant in eukaryote genomes, but little is known about how they evolve when they confer a functional benefit on their host. We show here, for the first time, that the virus-like particles shown to protect Venturia canescens eggs against host immunity are derived from a nudivirus genome incorporated by the parasitic wasp into its own genetic material. Nudivirus hijacking was also at the origin of protective particles from braconid wasps. However, we show here that the viral genes produce "liposomes" that wrap and deliver V. canescens virulence proteins, whereas the particles are used as gene transfer agents in braconid wasps. Our findings indicate that virus domestication has occurred repeatedly during parasitic wasp evolution but with different evolutionary trajectories after endogenization, resulting in different virulence molecule delivery strategies.

19.
Viruses ; 7(7): 3625-46, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26198241

ABSTRACT

Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%). K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs). Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential.


Subject(s)
Genetic Variation , Genome, Viral , Nucleopolyhedroviruses/genetics , Animals , Base Sequence , Genomics , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Moths/virology , Mutation , Nucleopolyhedroviruses/isolation & purification , Polymorphism, Single Nucleotide , Viral Proteins/genetics
20.
J Virol ; 89(6): 3008-25, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25540386

ABSTRACT

UNLABELLED: A large double-stranded DNA (dsDNA) virus that produces occlusion bodies, typical of baculoviruses, has been described to infect crane fly larvae of the genus Tipula (Diptera, Tipulidae). Because of a lack of genomic data, this virus has remained unclassified. Electron microscopy of an archival virus isolated from Tipula oleracea, T. oleracea nudivirus (ToNV), showed irregularly shaped occlusion bodies measuring from 2 to 5 µm in length and 2 µm in middiameter, filled with rod-shape virions containing single nucleocapsids within a bilayer envelope. Whole-genome amplification and Roche 454 sequencing revealed a complete circular genome sequence of 145.7 kb, containing five direct repeat regions. We predicted 131 open reading frames, including a homolog of the polyhedrin gene encoding the major occlusion body protein of T. paludosa nucleopolyhedrovirus (NPV). BLAST searches demonstrated that ToNV had 21 of the 37 baculovirus core genes but shared 52 genes with nudiviruses (NVs). Phylogenomic analyses indicated that ToNV clearly belongs to the Nudiviridae family but should probably be assigned to a new genus. Among nudiviruses, ToNV was most closely related to the Penaeus monodon NV and Heliothis zea NV clade but distantly related to Drosophila innubia NV, the other nudivirus infecting a Diptera. Lastly, ToNV was found to be most closely related to the nuvidirus ancestor of bracoviruses. This was also reflected in terms of gene content, as ToNV was the only known exogenous virus harboring homologs of the Cc50C22.6 and 27b (Cc50C22.7) genes found in the nudiviral genomic cluster involved in bracovirus particle production. IMPORTANCE: The Nudiviridae is a family of arthropod dsDNA viruses from which striking cases of endogenization have been reported (i.e., symbiotic bracoviruses deriving from a nudivirus and the endogenous nudivirus of the brown planthopper). Although related to baculoviruses, relatively little is known about the genomic diversity of exogenous nudiviruses. Here, we characterized, morphologically and genetically, an archival sample of the Tipula oleracea nudivirus (ToNV), which has the particularity of forming occlusion bodies. Comparative genomic and phylogenomic analyses showed ToNV to be to date the closest known relative of the exogenous ancestor of bracoviruses and that ToNV should be assigned to a new genus. Moreover, we revised the homology relationships of nudiviral genes and identified a new set of 32 core genes for the Nudiviridae, of which 21 were also baculovirus core genes. These findings provide important insights into the evolutionary history of large arthropod dsDNA viruses.


Subject(s)
DNA Viruses/genetics , Diptera/virology , Genome, Viral , Nucleopolyhedroviruses/genetics , Amino Acid Sequence , Animals , DNA Viruses/chemistry , DNA Viruses/classification , DNA Viruses/isolation & purification , Molecular Sequence Data , Nucleopolyhedroviruses/chemistry , Nucleopolyhedroviruses/classification , Nucleopolyhedroviruses/isolation & purification , Open Reading Frames , Phylogeny , Sequence Alignment , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...