Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Elife ; 132024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347802

ABSTRACT

The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Capsid , Capsid Proteins , Anti-HIV Agents/pharmacology
2.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-37693451

ABSTRACT

Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.

3.
Nat Struct Mol Biol ; 30(3): 370-382, 2023 03.
Article in English | MEDLINE | ID: mdl-36624347

ABSTRACT

HIV-1 Gag metamorphoses inside each virion, from an immature lattice that forms during viral production to a mature capsid that drives infection. Here we show that the immature lattice is required to concentrate the cellular metabolite inositol hexakisphosphate (IP6) into virions to catalyze mature capsid assembly. Disabling the ability of HIV-1 to enrich IP6 does not prevent immature lattice formation or production of the virus. However, without sufficient IP6 molecules inside each virion, HIV-1 can no longer build a stable capsid and fails to become infectious. IP6 cannot be replaced by other inositol phosphate (IP) molecules, as substitution with other IPs profoundly slows mature assembly kinetics and results in virions with gross morphological defects. Our results demonstrate that while HIV-1 can become independent of IP6 for immature assembly, it remains dependent upon the metabolite for mature capsid formation.


Subject(s)
HIV-1 , HIV-1/metabolism , Capsid/metabolism , Virus Assembly , Capsid Proteins/metabolism , Phytic Acid/metabolism , Virion
4.
Elife ; 112022 08 24.
Article in English | MEDLINE | ID: mdl-36000711

ABSTRACT

The cholesterol-dependent cytolysin perfringolysin O (PFO) is secreted by Clostridium perfringens as a bacterial virulence factor able to form giant ring-shaped pores that perforate and ultimately lyse mammalian cell membranes. To resolve the kinetics of all steps in the assembly pathway, we have used single-molecule fluorescence imaging to follow the dynamics of PFO on dye-loaded liposomes that lead to opening of a pore and release of the encapsulated dye. Formation of a long-lived membrane-bound PFO dimer nucleates the growth of an irreversible oligomer. The growing oligomer can insert into the membrane and open a pore at stoichiometries ranging from tetramers to full rings (~35 mers), whereby the rate of insertion increases linearly with the number of subunits. Oligomers that insert before the ring is complete continue to grow by monomer addition post insertion. Overall, our observations suggest that PFO membrane insertion is kinetically controlled.


Subject(s)
Bacterial Toxins , Hemolysin Proteins , Animals , Bacterial Toxins/metabolism , Clostridium perfringens/metabolism , Hemolysin Proteins/metabolism , Liposomes/metabolism , Mammals/metabolism
5.
IUBMB Life ; 74(12): 1169-1179, 2022 12.
Article in English | MEDLINE | ID: mdl-35836358

ABSTRACT

The cholesterol-dependent cytolysins (CDCs) are a major family of bacterial pore-forming proteins secreted as virulence factors by Gram-positive bacterial species. CDCs are produced as soluble, monomeric proteins that bind specifically to cholesterol-rich membranes, where they oligomerize into ring-shaped pores of more than 30 monomers. Understanding the details of the steps the toxin undergoes in converting from monomer to a membrane-spanning pore is a continuing challenge. In this review we summarize what we know about CDCs and highlight the remaining outstanding questions that require answers to obtain a complete picture of how these toxins kill cells.


Subject(s)
Bacterial Toxins , Cytotoxins , Cytotoxins/metabolism , Bacterial Toxins/genetics , Cholesterol/metabolism , Bacteria/metabolism , Cell Membrane/metabolism , Bacterial Proteins/metabolism
6.
Mol Cell ; 82(15): 2871-2884.e6, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35809572

ABSTRACT

We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.


Subject(s)
HIV-1 , Capsid/metabolism , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HIV-1/genetics , Humans , Immunity, Innate , Nucleotidyltransferases/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism
7.
ACS Nano ; 16(4): 6455-6467, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35316035

ABSTRACT

Biomolecular complexes can form stable assemblies yet can also rapidly exchange their subunits to adapt to environmental changes. Simultaneously allowing for both stability and rapid exchange expands the functional capacity of biomolecular machines and enables continuous function while navigating a complex molecular world. Inspired by biology, we design and synthesize a DNA origami receptor that exploits multivalent interactions to form stable complexes that are also capable of rapid subunit exchange. The system utilizes a mechanism first outlined in the context of the DNA replisome, known as multisite competitive exchange, and achieves a large separation of time scales between spontaneous subunit dissociation, which requires days, and rapid subunit exchange, which occurs in minutes. In addition, we use the DNA origami receptor to demonstrate stable interactions with rapid exchange of both DNA and protein subunits, thus highlighting the applicability of our approach to arbitrary molecular cargo, an important distinction with canonical toehold exchange between single-stranded DNA. We expect this study to benefit future studies that use DNA origami structures to exploit multivalent interactions for the design and synthesis of a wide range of possible kinetic behaviors.


Subject(s)
Nanostructures , Nanotechnology , DNA/chemistry , DNA, Single-Stranded , Nanostructures/chemistry , Nucleic Acid Conformation
8.
Biophys Rev ; 14(1): 23-32, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35340594

ABSTRACT

Human immunodeficiency virus (HIV) is the most extensively researched human pathogen. Despite this massive scientific endeavour, several fundamental viral processes remain enigmatic. One such critical process is uncoating-the event that releases the viral genome from the proteinaceous shell of the capsid during infection. While this process is conceptually simple, the molecular underpinnings, timing, regulation, and cellular location of uncoating remain contentious. This review describes the hurdles that have limited our understanding in this area and presents recently deployed in vitro and in cellulo techniques that have been developed expressly with the aim of directly visualising capsid uncoating at the single-particle level and understanding the mechanics behind this essential aspect of HIV infection.

9.
Chemphyschem ; 23(3): e202100765, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34856050

ABSTRACT

We propose a theoretical model for the influence of confinement on biomolecular binding at the single-molecule scale at equilibrium, based on the change of the number of microstates (localization and orientation) upon reaction. Three cases are discussed: DNA sequences shorter and longer than the single strain DNA Kuhn length and spherical proteins, confined into a spherical container (liposome, droplet, etc.). The influence of confinement is found to be highly dependent on the molecular structure and significant for large molecules (relative to container size).


Subject(s)
DNA , Models, Theoretical , DNA/chemistry
10.
Sci Adv ; 7(47): eabj5715, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797722

ABSTRACT

The viral capsid plays essential roles in HIV replication and is a major platform engaging host factors. To overcome challenges in study native capsid structure, we used the perfringolysin O to perforate the membrane of HIV-1 particles, thus allowing host proteins and small molecules to access the native capsid while improving cryo­electron microscopy image quality. Using cryo­electron tomography and subtomogram averaging, we determined the structures of native capsomers in the presence and absence of inositol hexakisphosphate (IP6) and cyclophilin A and constructed an all-atom model of a complete HIV-1 capsid. Our structures reveal two IP6 binding sites and modes of cyclophilin A interactions. Free energy calculations substantiate the two binding sites at R18 and K25 and further show a prohibitive energy barrier for IP6 to pass through the pentamer. Our results demonstrate that perfringolysin O perforation is a valuable tool for structural analyses of enveloped virus capsids and interactions with host cell factors.

11.
Sci Adv ; 7(11)2021 03.
Article in English | MEDLINE | ID: mdl-33692109

ABSTRACT

HIV virion assembly begins with the construction of an immature lattice consisting of Gag hexamers. Upon virion release, protease-mediated Gag cleavage leads to a maturation event in which the immature lattice disassembles and the mature capsid assembles. The cellular metabolite inositiol hexakisphosphate (IP6) and maturation inhibitors (MIs) both bind and stabilize immature Gag hexamers, but whereas IP6 promotes virus maturation, MIs inhibit it. Here we show that HIV is evolutionarily constrained to maintain an immature lattice stability that ensures IP6 packaging without preventing maturation. Replication-deficient mutant viruses with reduced IP6 recruitment display increased infectivity upon treatment with the MI PF46396 (PF96) or the acquisition of second-site compensatory mutations. Both PF96 and second-site mutations stabilise the immature lattice and restore IP6 incorporation, suggesting that immature lattice stability and IP6 binding are interdependent. This IP6 dependence suggests that modifying MIs to compete with IP6 for Gag hexamer binding could substantially improve MI antiviral potency.

12.
PLoS Pathog ; 17(2): e1009164, 2021 02.
Article in English | MEDLINE | ID: mdl-33524070

ABSTRACT

The HIV capsid self-assembles a protective conical shell that simultaneously prevents host sensing whilst permitting the import of nucleotides to drive DNA synthesis. This is accomplished through the construction of dynamic, highly charged pores at the centre of each capsid multimer. The clustering of charges required for dNTP import is strongly destabilising and it is proposed that HIV uses the metabolite IP6 to coordinate the pore during assembly. Here we have investigated the role of inositol phosphates in coordinating a ring of positively charged lysine residues (K25) that forms at the base of the capsid pore. We show that whilst IP5, which can functionally replace IP6, engages an arginine ring (R18) at the top of the pore, the lysine ring simultaneously binds a second IP5 molecule. Dose dependent removal of K25 from the pore severely inhibits HIV infection and concomitantly prevents DNA synthesis. Cryo-tomography reveals that K25A virions have a severe assembly defect that inhibits the formation of mature capsid cones. Monitoring both the kinetics and morphology of capsids assembled in vitro reveals that while mutation K25A can still form tubes, the ability of IP6 to drive assembly of capsid cones has been lost. Finally, in single molecule TIRF microscopy experiments, capsid lattices in permeabilised K25 mutant virions are rapidly lost and cannot be stabilised by IP6. These results suggest that the coordination of IP6 by a second charged ring in mature hexamers drives the assembly of conical capsids capable of reverse transcription and infection.


Subject(s)
Capsid/metabolism , HIV-1/physiology , Lysine/metabolism , Phytic Acid/metabolism , Virus Assembly/physiology , Cell Line , DNA, Viral/biosynthesis , HIV-1/genetics , HIV-1/metabolism , Humans , Microscopy, Fluorescence , Nucleotides/metabolism
13.
Anal Chem ; 93(8): 3786-3793, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33593049

ABSTRACT

The HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution. The assay capitalizes on the property of the HIV capsid as a multivalent interaction platform, facilitating high sensitivity detection of multiple prey molecules that have accumulated onto capsids as spikes in fluorescence intensity traces. By using a scanning stage, we reduced the measurement time to 10 s without compromising on sensitivity, providing a rapid binding assay for screening libraries of potential capsid interactors. The assay can also identify interfaces for host molecule binding by using capsids with defects in known interaction interfaces. Two-color coincidence detection using the fluorescent capsid as the bait further allows the quantification of binding levels and determination of binding affinities. Overall, the assay provides new tools for the discovery and characterization of molecules used by the HIV capsid to orchestrate infection. The measurement principle can be extended for the development of sensitive interaction assays, utilizing natural or synthetic multivalent scaffolds as analyte-binding platforms.


Subject(s)
Capsid , HIV-1 , Binding Sites , Capsid Proteins , Spectrometry, Fluorescence
14.
Mol Biol Cell ; 31(22): 2452-2462, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32845787

ABSTRACT

Tropomyosins regulate the dynamics and functions of the actin cytoskeleton by forming long chains along the two strands of actin filaments that act as gatekeepers for the binding of other actin-binding proteins. The fundamental molecular interactions underlying the binding of tropomyosin to actin are still poorly understood. Using microfluidics and fluorescence microscopy, we observed the binding of the fluorescently labeled tropomyosin isoform Tpm1.8 to unlabeled actin filaments in real time. This approach, in conjunction with mathematical modeling, enabled us to quantify the nucleation, assembly, and disassembly kinetics of Tpm1.8 on single filaments and at the single-molecule level. Our analysis suggests that Tpm1.8 decorates the two strands of the actin filament independently. Nucleation of a growing tropomyosin domain proceeds with high probability as soon as the first Tpm1.8 molecule is stabilized by the addition of a second molecule, ultimately leading to full decoration of the actin filament. In addition, Tpm1.8 domains are asymmetrical, with enhanced dynamics at the edge oriented toward the barbed end of the actin filament. The complete description of Tpm1.8 kinetics on actin filaments presented here provides molecular insight into actin-tropomyosin filament formation and the role of tropomyosins in regulating actin filament dynamics.


Subject(s)
Actin Cytoskeleton/metabolism , Tropomyosin/metabolism , Actin Cytoskeleton/physiology , Actins/metabolism , Kinetics , Microfluidics/methods , Microscopy, Fluorescence/methods , Protein Binding , Protein Domains , Protein Isoforms/metabolism , Tropomyosin/physiology
15.
Viruses ; 12(6)2020 06 06.
Article in English | MEDLINE | ID: mdl-32517260

ABSTRACT

The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2-5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on "Successfully transitioning from post-doc to lab head", winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia.


Subject(s)
Virology/organization & administration , Australia , Awards and Prizes , Group Processes , Societies, Scientific
16.
Langmuir ; 36(13): 3624-3632, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32212624

ABSTRACT

The human immunodeficiency virus (HIV) capsid is a cone-shaped capsule formed from the viral capsid protein (CA), which is arranged into a lattice of hexamers and pentamers. The capsid comprises multiple binding interfaces for the recruitment of host proteins and macromolecules used by the virus to establish infection. Here, we coassembled CA proteins engineered for pentamer cross-linking and fluorescence labeling, into spherical particles. The CA spheres, which resemble the pentamer-rich structure of the end caps of the native HIV capsid, were immobilized onto surfaces as biorecognition elements for fluorescence microscopy-based quantification of host protein binding. The capsid-binding host protein cyclophilin A (CypA) is bound to CA spheres with the same affinity as CA tubes but at a higher CypA/CA stoichiometry, suggesting that the level of recruitment of CypA to the HIV capsid is dependent on curvature.


Subject(s)
Capsid , HIV Infections , HIV-1 , Capsid Proteins , Cyclophilin A , Humans
17.
Cell Rep ; 29(12): 3983-3996.e4, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31851928

ABSTRACT

HIV-1 hijacks host proteins to promote infection. Here we show that HIV is also dependent upon the host metabolite inositol hexakisphosphate (IP6) for viral production and primary cell replication. HIV-1 recruits IP6 into virions using two lysine rings in its immature hexamers. Mutation of either ring inhibits IP6 packaging and reduces viral production. Loss of IP6 also results in virions with highly unstable capsids, leading to a profound loss of reverse transcription and cell infection. Replacement of one ring with a hydrophobic isoleucine core restores viral production, but IP6 incorporation and infection remain impaired, consistent with an independent role for IP6 in stable capsid assembly. Genetic knockout of biosynthetic kinases IPMK and IPPK reveals that cellular IP6 availability limits the production of diverse lentiviruses, but in the absence of IP6, HIV-1 packages IP5 without loss of infectivity. Together, these data suggest that IP6 is a critical cofactor for HIV-1 replication.


Subject(s)
Capsid/metabolism , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Phytic Acid/metabolism , Virus Assembly , Virus Replication , Capsid/chemistry , HIV Infections/metabolism , HIV Infections/pathology , HeLa Cells , Humans , Protein Conformation
18.
ACS Appl Mater Interfaces ; 11(38): 34586-34594, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31483592

ABSTRACT

The human immunodeficiency virus 1 (HIV-1) capsid serves as a binding platform for proteins and small molecules from the host cell that regulate various steps in the virus life cycle. However, there are currently no quantitative methods that use assembled capsid lattices to measure host-pathogen interaction dynamics. Here we developed a single-molecule fluorescence biosensor using self-assembled capsid tubes as biorecognition elements and imaged capsid binders using total internal reflection fluorescence microscopy in a microfluidic setup. The method is highly sensitive in its ability to observe and quantify binding, to obtain dissociation constants, and to extract kinetics with an extended application of using more complex analytes that can accelerate characterization of novel capsid binders.


Subject(s)
Biosensing Techniques , Capsid , HIV-1 , Lab-On-A-Chip Devices , Capsid/chemistry , Capsid/metabolism , HIV-1/chemistry , HIV-1/metabolism , Humans , Microscopy, Fluorescence
19.
Sci Rep ; 9(1): 11262, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375704

ABSTRACT

Tropomyosins (Tpm) determine the functional capacity of actin filaments in an isoform-specific manner. The primary isoform in cancer cells is Tpm3.1 and compounds that target Tpm3.1 show promising results as anti-cancer agents both in vivo and in vitro. We have determined the molecular mechanism of interaction of the lead compound ATM-3507 with Tpm3.1-containing actin filaments. When present during co-polymerization of Tpm3.1 with actin, 3H-ATM-3507 is incorporated into the filaments and saturates at approximately one molecule per Tpm3.1 dimer and with an apparent binding affinity of approximately 2 µM. In contrast, 3H-ATM-3507 is poorly incorporated into preformed Tpm3.1/actin co-polymers. CD spectroscopy and thermal melts using Tpm3.1 peptides containing the C-terminus, the N-terminus, and a combination of the two forming the overlap junction at the interface of adjacent Tpm3.1 dimers, show that ATM-3507 shifts the melting temperature of the C-terminus and the overlap junction, but not the N-terminus. Molecular dynamic simulation (MDS) analysis predicts that ATM-3507 integrates into the 4-helix coiled coil overlap junction and in doing so, likely changes the lateral movement of Tpm3.1 across the actin surface resulting in an alteration of filament interactions with actin binding proteins and myosin motors, consistent with the cellular impact of ATM-3507.


Subject(s)
Actin Cytoskeleton/metabolism , Antineoplastic Agents/pharmacology , Tropomyosin/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Circular Dichroism , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Neoplasms/drug therapy , Protein Conformation, alpha-Helical/drug effects , Protein Domains/genetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/ultrastructure , Protein Multimerization/drug effects , Protein Multimerization/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Structure-Activity Relationship , Thermodynamics , Tropomyosin/metabolism , Tropomyosin/ultrastructure
20.
Cell Host Microbe ; 26(2): 151-153, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31415744

ABSTRACT

In this issue of Cell Host & Microbe, Summers et al. (2019) use protein engineering to generate a toolbox of HIV-1 capsid oligomers. In an accompanying Cell Reports paper, Huang et al. (2019) use these oligomers to determine how the capsid engages the kinesin-1 adaptor protein FEZ1.


Subject(s)
Capsid , HIV-1 , Adaptor Proteins, Signal Transducing , Capsid Proteins , Kinesins
SELECTION OF CITATIONS
SEARCH DETAIL
...