Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(21): e202317756, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38523073

ABSTRACT

Hyperphosphorylation and aggregation of the protein tau play key roles in the development of Alzheimer's disease (AD). While the molecular structure of the filamentous tau aggregates has been determined to atomic resolution, there is far less information available about the smaller, soluble aggregates, which are believed to be more toxic. Traditional techniques are limited to bulk measures and struggle to identify individual aggregates in complex biological samples. To address this, we developed a novel single-molecule pull-down-based assay (MAPTau) to detect and characterize individual tau aggregates in AD and control post-mortem brain and biofluids. Using MAPTau, we report the quantity, as well as the size and circularity of tau aggregates measured using super-resolution microscopy, revealing AD-specific differences in tau aggregate morphology. By adapting MAPTau to detect multiple phosphorylation markers in individual aggregates using two-color coincidence detection, we derived compositional profiles of the individual aggregates. We find an AD-specific phosphorylation profile of tau aggregates with more than 80 % containing multiple phosphorylations, compared to 5 % in age-matched non-AD controls. Our results show that MAPTau is able to identify disease-specific subpopulations of tau aggregates phosphorylated at different sites, that are invisible to other methods and enable the study of disease mechanisms and diagnosis.


Subject(s)
Alzheimer Disease , Protein Aggregates , tau Proteins , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/diagnosis , tau Proteins/metabolism , tau Proteins/chemistry , tau Proteins/analysis , Phosphorylation , Single Molecule Imaging/methods , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology
2.
ACS Chem Biol ; 19(2): 428-441, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38289242

ABSTRACT

Protein-protein interactions (PPIs) can be detected through selective complementation of split fluorescent reporters made of two complementary fragments that reassemble into a functional fluorescent reporter when in close proximity. We previously introduced splitFAST, a chemogenetic PPI reporter with rapid and reversible complementation. Here, we present the engineering of splitFAST2, an improved reporter displaying higher brightness, lower self-complementation, and higher dynamic range for optimal monitoring of PPI using an original protein engineering strategy that exploits proteins with orthology relationships. Our study allowed the identification of a system with improved properties and enabled a better understanding of the molecular features controlling the complementation properties. Because of the rapidity and reversibility of its complementation, its low self-complementation, high dynamic range, and improved brightness, splitFAST2 is well suited to study PPI with high spatial and temporal resolution, opening great prospects to decipher the role of PPI in various biological contexts.


Subject(s)
Protein Interaction Mapping , Proteins , Proteins/genetics , Proteins/metabolism , Protein Engineering
3.
Mol Psychiatry ; 29(2): 369-386, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38102482

ABSTRACT

Understanding the role of small, soluble aggregates of beta-amyloid (Aß) and tau in Alzheimer's disease (AD) is of great importance for the rational design of preventative therapies. Here we report a set of methods for the detection, quantification, and characterisation of soluble aggregates in conditioned media of cerebral organoids derived from human iPSCs with trisomy 21, thus containing an extra copy of the amyloid precursor protein (APP) gene. We detected soluble beta-amyloid (Aß) and tau aggregates secreted by cerebral organoids from both control and the isogenic trisomy 21 (T21) genotype. We developed a novel method to normalise measurements to the number of live neurons within organoid-conditioned media based on glucose consumption. Thus normalised, T21 organoids produced 2.5-fold more Aß aggregates with a higher proportion of larger (300-2000 nm2) and more fibrillary-shaped aggregates than controls, along with 1.3-fold more soluble phosphorylated tau (pTau) aggregates, increased inflammasome ASC-specks, and a higher level of oxidative stress inducing thioredoxin-interacting protein (TXNIP). Importantly, all this was detectable prior to the appearance of histological amyloid plaques or intraneuronal tau-pathology in organoid slices, demonstrating the feasibility to model the initial pathogenic mechanisms for AD in-vitro using cells from live genetically pre-disposed donors before the onset of clinical disease. Then, using different iPSC clones generated from the same donor at different times in two independent experiments, we tested the reproducibility of findings in organoids. While there were differences in rates of disease progression between the experiments, the disease mechanisms were conserved. Overall, our results show that it is possible to non-invasively follow the development of pathology in organoid models of AD over time, by monitoring changes in the aggregates and proteins in the conditioned media, and open possibilities to study the time-course of the key pathogenic processes taking place.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Down Syndrome , Induced Pluripotent Stem Cells , Organoids , tau Proteins , Humans , Organoids/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , tau Proteins/metabolism , Down Syndrome/metabolism , Down Syndrome/genetics , Down Syndrome/pathology , Induced Pluripotent Stem Cells/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Neurons/metabolism , Brain/metabolism , Brain/pathology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Trisomy/genetics , Oxidative Stress , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Culture Media, Conditioned , Microscopy, Fluorescence/methods
4.
Nat Chem Biol ; 17(1): 30-38, 2021 01.
Article in English | MEDLINE | ID: mdl-32778846

ABSTRACT

Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein-protein interactions by live-cell fluorescence microscopy.


Subject(s)
Biosensing Techniques , Fluorescent Dyes/chemistry , Molecular Biology/methods , Optical Imaging/methods , Plasmids/chemistry , Staining and Labeling/methods , Animals , Benzylidene Compounds/chemistry , COS Cells , Chlorocebus aethiops , Cloning, Molecular , Color , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescent Dyes/metabolism , Gene Expression , Oligonucleotides/genetics , Oligonucleotides/metabolism , Plasmids/metabolism , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...