Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Cell Infect Microbiol ; 13: 1204027, 2023.
Article in English | MEDLINE | ID: mdl-37389207

ABSTRACT

Bacterial spot of stone fruits caused by Xanthomonas arboricola pv. pruni (Xap) is one of the most significant diseases of several Prunus species. Disease outbreaks can result in severe economic losses while the control options are limited. Antibacterial efficacy of essential oils (EOs) of thyme, cinnamon, clove, rosemary, tea tree, eucalyptus, lemon grass, citronella grass, and lemon balm was assessed against two Hungarian Xap isolates. The minimal inhibitory concentration (MIC) was determined by broth microdilution assay and for the identification of active EOs' components a newly introduced high-performance thin-layer chromatography (HPTLC)-Xap (direct bioautography) method combined with solid-phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) was applied. All EOs inhibited both bacterium isolates, but cinnamon proved to be the most effective EO with MIC values of 31.25 µg/mL and 62.5 µg/mL, respectively. Compounds in the antibacterial HPTLC zones were identified as thymol in thyme, trans-cinnamaldehyde in cinnamon, eugenol in clove, borneol in rosemary, terpinen-4-ol in tea tree, citral (neral and geranial) in lemon grass and lemon balm, and citronellal and nerol in citronella grass. Regarding active compounds, thymol had the highest efficiency with a MIC value of 50 µg/mL. Antibacterial effects of EOs have already been proven for several Xanthomonas species, but to our knowledge, the studied EOs, except for lemon grass and eucalyptus, were tested for the first time against Xap. Furthermore, in case of Xap, this is the first report demonstrating that direct bioautography is a fast and suitable method for screening anti-Xap components of complex matrices, like EOs.


Subject(s)
Oils, Volatile , Xanthomonas , Oils, Volatile/pharmacology , Thymol , Anti-Bacterial Agents/pharmacology , Tea
2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-37259296

ABSTRACT

Essential oils (EOs) are widely used topically in musculoskeletal disorders (MSDs); however, their clinical efficacy is controversial. Our aim was to find evidence that topical EOs are beneficial as an add-on treatment in MSDs. We performed a systematic review and meta-analysis to summarize the evidence on the available data of randomized controlled trials (RCTs). The protocol of this work was registered on PROSPERO. We used Web of Science, EMBASE, PubMed, Central Cochrane Library and Scopus electronic databases for systematic search. Eight RCTs were included in the quantitative analysis. In conclusion, EO therapy had a favorable effect on pain intensity (primary outcome) compared to placebo. The greatest pain-relieving effect of EO therapy was calculated immediately after the intervention (MD of pain intensity = -0.87; p = 0.014). EO therapy had a slightly better analgesic effect than placebo one week after the intervention (MD of pain intensity = -0.58; p = 0.077) and at the four-week follow-up as well (MD of pain intensity = -0.52; p = 0.049). EO therapy had a beneficial effect on stiffness (a secondary outcome) compared to the no intervention group (MD = -0.77; p = 0.061). This systematic review and meta-analysis showed that topical EOs are beneficial as an add-on treatment in reducing pain and stiffness in the investigated MSDs.

3.
Molecules ; 27(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080283

ABSTRACT

The biofilm formation of bacteria in different parts of the human body can influence the success of antibiotic therapy. Essential oils (EOs) and their components are becoming increasingly popular in point of view of medicinal applications, because of their antibacterial efficacy. The immortelle EO has been used traditionally as an expectorant; however, there are no studies summarizing its antibacterial effect against respiratory tract bacteria. Our aim was to investigate the antibacterial and biofilm inhibitory activity of immortelle (Helichrysum italicum) EO against respiratory tract pathogens such as Haemophilus influenzae, H. parainfluenzae, Pseudomonas aeruginosa and Streptococcus pneumoniae. In order to prove the antibacterial effect of the immortelle EO, broth microdilution and biofilm inhibition tests, and membrane damage assay were investigated. Scanning electron microscopy was used to identify the structural modifications in bacterial cells. Our results showed that immortelle EO has antibacterial and anti-biofilm effects against respiratory tract bacteria used in this study. H. parainfluenzae was the most sensitive to each treatment, however, P. aeruginosa was the most resistant bacteria. In conclusion, the studied EO may have a role in the treatment of respiratory tract infections due to their antibacterial and anti-biofilm activity.


Subject(s)
Helichrysum , Oils, Volatile , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Helichrysum/chemistry , Humans , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Pseudomonas aeruginosa
4.
Molecules ; 27(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744988

ABSTRACT

Scots pine (SO) and clove (CO) essential oils (EOs) are commonly used by inhalation, and their main components are shown to reduce inflammatory mediator production. The aim of our research was to investigate the chemical composition of commercially available SO and CO by gas chromatography-mass spectrometry and study their effects on airway functions and inflammation in an acute pneumonitis mouse model. Inflammation was evoked by intratracheal endotoxin and EOs were inhaled three times during the 24 h experimental period. Respiratory function was analyzed by unrestrained whole-body plethysmography, lung inflammation by semiquantitative histopathological scoring, myeloperoxidase (MPO) activity and cytokine measurements. α-Pinene (39.4%) was the main component in SO, and eugenol (88.6%) in CO. Both SO and CO significantly reduced airway hyperresponsiveness, and prevented peak expiratory flow, tidal volume increases and perivascular edema formation. Meanwhile, inflammatory cell infiltration was not remarkably affected. In contrast, MPO activity and several inflammatory cytokines (IL-1ß, KC, MCP-1, MIP-2, TNF-α) were aggravated by both EOs. This is the first evidence that SO and CO inhalation improve airway function, but enhance certain inflammatory parameters. These results suggest that these EOs should be used with caution in cases of inflammation-associated respiratory diseases.


Subject(s)
Asthma , Oils, Volatile , Pinus sylvestris , Pneumonia , Syzygium , Animals , Endotoxins/toxicity , Inflammation/drug therapy , Mice , Oils, Volatile/chemistry , Pneumonia/chemically induced , Syzygium/chemistry
5.
BMC Complement Med Ther ; 22(1): 119, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35490236

ABSTRACT

BACKGROUND: Interstitial cystitis (IC) has a chronic chemical irritation and inflammation of non-bacterial origin in the bladder wall leading to various severe symptoms. There is evidence that chronic inflammation is significantly associated with abnormal urothelial barrier function, epithelial dysfunction. This is the underlying cause of urothelial apoptosis and sterile inflammation. METHOD: The anti-inflammatory effects of lavender and eucalyptus essential oils (EOs) and their main components (linalool and eucalyptol) were investigated in the T24 human bladder epithelial cell line on TNFα stimulated inflammation, at 3 types of treatment schedule. The mRNA of pro-inflammatory cytokines (IL-1ß, IL-6, IL-8) were measured by Real Time PCR. Human IL-8 ELISA measurement was performed as well at 3 types of treatment schedule. The effects of lavender and eucalyptus EOs and their main components were compared to the response to NFκB inhibitor ACHP (2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-piperidinyl)-3-pyridinecarbonitrile). RESULT: There is no significant difference statistically, but measurements show that lavender EOs are more effective than eucalyptus EO. Long time treatment (24 h) of both lavender EO and linalool showed higher effect in decreasing pro-inflammatory cytokine mRNA expression than ACHP inhibitor following TNFα pre-treatment. Moreover, both lavender EOs were found to be significantly more effective in decreasing IL-8 secretion of T24 cells after TNFα pre-treatment compared to the ACHP NFκB-inhibitor. CONCLUSION: The lavender EOs may be suitable for use as an adjunct to intravesical therapy of IC. Their anti-inflammatory effect could well complement glycosaminoglycan-regenerative therapy in the urinary bladder after appropriate pharmaceutical formulation.


Subject(s)
Cystitis, Interstitial , Eucalyptus , Lavandula , Oils, Volatile , Anti-Inflammatory Agents/pharmacology , Cell Culture Techniques , Cystitis, Interstitial/drug therapy , Cystitis, Interstitial/metabolism , Cytokines , Female , Humans , Inflammation , Interleukin-8 , Male , Oils, Volatile/pharmacology , RNA, Messenger , Tumor Necrosis Factor-alpha
6.
Molecules ; 27(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35209211

ABSTRACT

Pitted keratolysis (PK) is a bacterial skin infection mostly affecting the pressure-bearing areas of the soles, causing unpleasant symptoms. Antibiotics are used for therapy, but the emergence of antiobiotic resistance, makes the application of novel topical therapeutic agents necessary. The antibacterial effects of 12 EOs were compared in the first part of this study against the three known aetiological agents of PK (Kytococcus sedentarius, Dermatophilus congolensis and Bacillus thuringiensis). The results of the minimal inhibitory concentration, minimal bactericidal concentration and spore-formation inhibition tests revealed that lemongrass was the most effective EO against all three bacterium species and was therefore chosen for further analysis. Seventeen compounds were identified with solid-phase microextraction followed by gas chromatography-mass spectrometry (HS-SPME/GC-MS) analysis while thin-layer chromatography combined with direct bioautography (TLC-BD) was used to detect the presence of antibacterially active compounds. Citral showed a characteristic spot at the Rf value of 0.47, while the HS-SPME/GC-MS analysis of an unknown spot with strong antibacterial activity revealed the presence of α-terpineol, γ-cadinene and calamenene. Of these, α-terpineol was confirmed to possess an antimicrobial effect on all three bacterium species associated with PK. Our study supports the hypothesis that, based on their spectrum, EO-based formulations have potent antibacterial effects against PK and warrant further investigation as topical therapeutics.


Subject(s)
Anti-Bacterial Agents , Bacteria/growth & development , Cymbopogon/chemistry , Oils, Volatile , Skin Diseases, Bacterial , Adult , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Male , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Skin Diseases, Bacterial/drug therapy , Skin Diseases, Bacterial/etiology , Skin Diseases, Bacterial/microbiology
7.
Front Plant Sci ; 12: 739467, 2021.
Article in English | MEDLINE | ID: mdl-34777420

ABSTRACT

High levels of soil salinity affect plant growth, reproduction, water and ion uptake, and plant metabolism in a complex manner. In this work, the effect of salt stress on vegetative growth, photosynthetic activity, and chloroplast ultrastructure of spearmint (Mentha spicata L. var. crispa "Moroccan") was investigated. After 2 weeks of low concentration treatments (5, 25, and 50 mM NaCl) of freshly cut shoots, we observed that the stem-derived adventitious root formation, which is a major mean for vegetative reproduction among mints, was completely inhibited at 50 mM NaCl concentration. One-week-long, high concentration (150 mM NaCl) salt stress, and isosmotic polyethylene glycol (PEG) 6000 treatments were compared in intact (rooted) plants and freshly cut, i.e., rootless shoots. Our data showed that roots have an important role in mitigating the deleterious effects of both the osmotic (PEG treatment) and specific ionic components of high salinity stress. At 50 mM NaCl or above, the ionic component of salt stress caused strong and irreversible physiological alterations. The effects include a decrease in relative water content, the maximal and actual quantum efficiency of photosystem II, relative chlorophyll content, as well as disorganization of the native chlorophyll-protein complexes as revealed by 77 K fluorescence spectroscopy. In addition, important ultrastructural damage was observed by transmission electron microscopy such as the swelling of the thylakoid lumen at 50 mM NaCl treatment. Interestingly, in almost fully dry leaf regions and leaves, granum structure was relatively well retained, however, their disorganization occurred in leaf chloroplasts of rooted spearmint treated with 150 mM NaCl. This loss of granum regularity was also confirmed in the leaves of these plants using small-angle neutron scattering measurements of intact leaves of 150 mM NaCl-stressed rooted plants. At the same time, solid-phase microextraction of spearmint leaves followed by gas chromatography and mass spectrometry (GC/MS) analyses revealed that the essential oil composition of spearmint was unaffected by the treatments applied in this work. Taken together, the used spearmint cultivar tolerates low salinity levels. However, at 50 mM NaCl concentration and above, the ionic components of the stress strongly inhibit adventitious root formation and thus their clonal propagation, and severely damage the photosynthetic apparatus.

8.
BMC Complement Med Ther ; 21(1): 148, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34022882

ABSTRACT

BACKGROUND: The essential oils possess both antimicrobial and anti-inflammatory effects, therefore they can provide an effective treatment against infections. Essential oils are widely used as supportive ingredients in many diseases, especially in the acute and chronic diseases of the respiratory tract. Neuroinflammation is responsible for several diseases of the central nervous system. Some plant-derived bioactive molecules have been shown to have role in attenuating neuroinflammation by regulating microglia, the immune cells of the CNS. METHODS: In this study, the anti-inflammatory effect of three chemotypes of thyme essential oil and their main compounds (geraniol, thujanol and linalool) were examined on lipopolysaccharide-induced BV-2 microglia. Three different experimental setups were used, LPS pretreatment, essential oil pretreatment and co-treatments of LPS and essential oils in order to determine whether essential oils are able to prevent inflammation and can decrease it. The concentrations of the secreted tumour necrosis factor α (TNFα) and interleukin-6 (IL-6) proinflammatory cytokines were measured and we analysed by Western blot the activity of the cell signalling pathways, NF-κB and CCAAT-enhancer binding protein ß (C/EBPß) regulating TNFα and IL-6 proinflammatory cytokine expressions in BV-2 cells. RESULTS: Our results showed definite alterations in the effects of essential oil chemotypes and their main compounds at the different experimental setups. Considering the changes of IL-6 and TNFα secretions the best reduction of inflammatory cytokines could be reached by the pretreatment with the essential oils. In addition, the main compounds exerted better effects than essential oil chemotypes in case of LPS pretreatment. At the essential oil pretreatment experiment, the effect of linalool and geraniol was outstanding but there was no major difference between the actions of chemotypes and standards. Main compounds could be seen to have large inhibitory effects on certain cell signalling components related to the activation of the expression of proinflammatory cytokines. CONCLUSION: Thyme essential oils are good candidates to use in prevention of neuroinflammation and related neurodegeneration, but the exact ratio of the components has to be selected carefully.


Subject(s)
Interleukin-6/metabolism , Microglia/drug effects , Plant Oils/pharmacology , Signal Transduction/drug effects , Thymol/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Mice , NF-kappa B/metabolism , Oils, Volatile/pharmacology , Thymus Plant
9.
Molecules ; 25(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256033

ABSTRACT

Onychomycosis is a disease that affects many adults, whose treatment includes both oral and topical therapies with low cure rates. The topical therapy is less effective but causes fewer side effects. This is why the development of an effective, easy to apply formulation for topical treatment is of high importance. We have used a nanotechnological approach to formulate Pickering emulsions (PEs) with well-defined properties to achieve site-specific delivery for antifungal drug combination of tioconazole and Melaleuca alternifolia essential oil. Silica nanoparticles with tailored size and partially hydrophobic surface have been synthesized and used for the stabilization of PEs. In vitro diffusion studies have been performed to evaluate the drug delivery properties of PEs. Ethanolic solution (ES) and conventional emulsions (CE) have been used as reference drug formulations. The examination of the antifungal effect of PEs has been performed on Candida albicans and Trichophyton rubrum as main pathogens. In vitro microbiological experimental results suggest that PEs are better candidates for onychomycosis topical treatment than CE or ES of the examined drugs. The used drugs have shown a significant synergistic effect, and the combination with an effective drug delivery system can result in a promising drug form for the topical treatment of onychomycosis.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Drug Compounding , Emulsions , Imidazoles/administration & dosage , Imidazoles/chemistry , Melaleuca/chemistry , Oils, Volatile/chemistry , Administration, Topical , Chemical Phenomena , Chromatography, Gas , Drug Delivery Systems , Microbial Sensitivity Tests , Nanoparticles/chemistry , Onychomycosis/drug therapy , Polymorphism, Single Nucleotide
10.
Molecules ; 25(15)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759721

ABSTRACT

Thyme (TO), cinnamon (CO), and Ceylon type lemongrass (LO) essential oils (EOs) are commonly used for inhalation. However, their effects and mechanisms on inflammatory processes are not well-documented, and the number of in vivo data that would be important to determine their potential benefits or risks is low. Therefore, we analyzed the chemical composition and investigated the activity of TO, CO, and LO on airway functions and inflammatory parameters in an acute pneumonitis mouse model. The components of commercially available EOs were measured by gas chromatography-mass spectrometry. Airway inflammation was induced by intratracheal endotoxin administration in mice. EOs were inhaled during the experiments. Airway function and hyperresponsiveness were determined by unrestrained whole-body plethysmography on conscious animals. Myeloperoxidase (MPO) activity was measured by spectrophotometry from lung tissue homogenates, from which semiquantitative histopathological scores were assessed. The main components of TO, CO, and LO were thymol, cinnamaldehyde, and citronellal, respectively. We provide here the first evidence that TO and CO reduce inflammatory airway hyperresponsiveness and certain cellular inflammatory parameters, so they can potentially be considered as adjuvant treatments in respiratory inflammatory conditions. In contrast, Ceylon type LO inhalation might have an irritant effect (e.g., increased airway hyperresponsiveness and MPO activity) on the inflamed airways, and therefore should be avoided.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Endotoxins/adverse effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Thymus Plant/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Biomarkers , Disease Models, Animal , Female , Inflammation/drug therapy , Inflammation/etiology , Inflammation/pathology , Lung/drug effects , Lung/pathology , Mice , Oils, Volatile/chemistry , Plant Oils/chemistry , Respiratory Tract Diseases/drug therapy , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/pathology
11.
Front Plant Sci ; 11: 196, 2020.
Article in English | MEDLINE | ID: mdl-32194595

ABSTRACT

It is unclear whether light affects the structure and activity of exogenous secretory tissues like glandular hairs. Therefore, transmission electron microscopy was first used to study plastid differentiation in glandular hairs and leaves of light-grown rosemary (Rosmarinus officinalis "Arp") plants kept for 2 weeks under ambient light conditions. During our detailed analyses, among others, we found leucoplasts with tubuloreticular membrane structures resembling prolamellar bodies in stalk cell plastids of peltate glandular hairs. To study the effect of darkness on plastid differentiation, we then dark-forced adult, light-grown rosemary plants for 2 weeks and observed occasionally the development of new shoots with elongated internodes and pale leaves on them. Absorption and fluorescence spectroscopic analyses of the chlorophyllous pigment contents, the native arrangement of the pigment-protein complexes and photosynthetic activity confirmed that the first and second pairs of leaf primordia of dark-forced shoots were partially etiolated (contained low amounts of protochlorophyll/ide and residual chlorophylls, had etio-chloroplasts with prolamellar bodies and low grana, and impaired photosynthesis). Darkness did not influence plastid structure in fifth leaves or secretory tissues (except for head cells of peltate glandular hairs in which rarely tubuloreticular membranes appeared). The mesophyll cells of cotyledons of 2-week-old dark-germinated rosemary seedlings contained etioplasts with highly regular prolamellar bodies similar to those in mesophyll etio-chloroplasts of leaves and clearly differing from tubuloreticular membranes of secretory cells. Analyses of the essential oil composition obtained after solid phase microextraction and gas chromatography-mass spectroscopy showed that in addition to light, the age of the studied organ (i.e., first leaf primordia and leaf tip vs. fifth, fully developed green leaves) and the type of the organ (cotyledon vs. leaves) also strongly influenced the essential oil composition. Therefore, light conditions and developmental stage are both important factors to be considered in case of potential therapeutic, culinary or aromatic uses of rosemary leaves and their essential oils.

12.
J Chromatogr A ; 1611: 460602, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31653473

ABSTRACT

A high-performance thin-layer chromatography (HPTLC) method was developed for rapid and easy-to-perform discrimination between five goldenrod species present in Europe: the native Solidago virgaurea and the four invasive aliens, S. canadensis, S. gigantea, S. rugosa and S. graminifolia. The chemotaxonomic distinction was based on the chemical profile of their root extracts, confirmed by principal component analysis. This allowed the distinction of the goldenrods in wintertime, when classical morphological methods are not applicable. Their enzyme inhibitory profiles were determined by HPTLC combined with α-glucosidase, ß-glucosidase, α-amylase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) assays. Two compounds of S. canadensis showed the most intense enzyme inhibition in all assays, having also antibacterial activity against Bacillus subtilis, Xanthomonas euvesicatoria and Aliivibrio fischeri strains. HPTLC-high-resolution mass spectrometry (HRMS), bioassay-guided isolation, NMR spectroscopy and literature data led to the characterization and identification of the labdane diterpenes solidagenone and presolidagenone as the active S. canadensis root components. The previously identified polyacetylenes (2Z,8Z and 2E,8Z matricaria esters) of S. virgaurea, also inhibited all enzymes. Except for the known anti-AChE effect of the 2Z,8Z-matricaria ester, this is the first report on the α-glucosidase, ß-glucosidase, α-amylase, AChE and BChE inhibitory activity of these potent compounds. The anti-hyperglycemic effects of the S. canadensis labdanoids were also observed for the first time. Combined with effect-directed assays and HRMS, hyphenated HPTLC allowed an effect-directed high-throughput screening and a fast characterization of multipotent compounds. The investigation of botanicals by fast, hyphenated, bioanalytical tools substantially increased the information gain with regard to active principles (bioprofiling) and efficiently pointed to potent candidates for drug development.


Subject(s)
Plant Extracts/chemistry , Plant Roots/chemistry , Solidago/chemistry , Anti-Bacterial Agents/analysis , Chemical Fractionation , Chromatography, Thin Layer , Phytochemicals/analysis , Principal Component Analysis
13.
Sci Rep ; 9(1): 16611, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719559

ABSTRACT

Essential oils (EOs) are commonly applied in mouth care products like mouthwashes, mostly as an ethanolic solution or by usage of surfactants as solubilising agents. In this study, we present a formulation for preparation of Pickering nano-emulsions (PnE) of EOs as a novel form for application of EOs in mouth care. For the preparation of PnE, we have synthesised surface-modified silica nanoparticles with a mean diameter of 20 nm, as well as we have examined the effect of EOs concentration on PnE droplet size and stability. In vitro study of their effect on the Streptococcus mutans biofilm as the main pathogen of dental health problems has been performed. We have found that EOs in the PnE form has the highest effectiveness against biofilm formation. Diffusion through the biofilm model membrane was studied to explain this observation. We have found that PnEs have a better performance in the transportation of EOs trough model membrane than the ethanolic solutions and conventional emulsions (CEs).


Subject(s)
Biofilms/drug effects , Oils, Volatile/pharmacology , Streptococcus mutans/drug effects , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Oils, Volatile/administration & dosage , Silicon Dioxide/administration & dosage , Silicon Dioxide/pharmacology
14.
Molecules ; 24(18)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514307

ABSTRACT

Essential oils (EOs) are becoming increasingly popular in medical applications because of their antimicrobial effect. Direct bioautography (DB) combined with thin layer chromatography (TLC) is a screening method for the detection of antimicrobial compounds in plant extracts, for example, in EOs. Due to their lipophilic character, the common microbiological assays (etc. disk diffusion) could not provide reliable results. The aim of this study was the evaluation of antibacterial and anti-biofilm properties of the EO of cinnamon bark, clove, peppermint, thyme, and their main components against Haemophilus influenzae and H. parainfluenzae. Oil in water (O/W) type Pickering nano-emulsions stabilized with silica nanoparticles from each oil were prepared to increase their water-solubility. Samples with Tween80 surfactant and absolute ethanol were also used. Results showed that H. influenzae was more sensitive to the EOs than H. parainfluenzae (except for cinnamon bark oil). In thin layer chromatography-direct bioautography (TLC-DB) the ethanolic solutions of thyme oil presented the best activity against H. influenzae, while cinnamon oil was the most active against H. parainfluenzae. Pickering nano-emulsion of cinnamon oil inhibited the biofilm formation of H. parainfluenzae (76.35%) more efficiently than samples with Tween80 surfactant or absolute ethanol. In conclusion, Pickering nano-emulsion of EOs could inhibit the biofilm production effectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Chromatography, Thin Layer/methods , Haemophilus/drug effects , Haemophilus/physiology , Oils, Volatile/pharmacology , Emulsions/chemistry , Microbial Sensitivity Tests , Nanoparticles/chemistry , Volatile Organic Compounds/analysis
15.
Molecules ; 24(15)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382520

ABSTRACT

Horseradish hairy root cultures are suitable plant tissue organs to study the glucosinolate-myrosinase-isothiocyanate system and also to produce the biologically active isothiocyanates and horseradish peroxidase, widely used in molecular biology. Fifty hairy root clones were isolated after Agrobacterium rhizogenes infection of surface sterilized Armoracia rusticana petioles and leaf blades, from which 21 were viable after antibiotic treatment. Biomass properties (e.g. dry weight %, daily growth index), glucosinolate content (analyzed by liquid chromatography-electronspray ionization-mass spectrometry (LC-ESI-MS/MS)), isothiocyanate and nitrile content (analyzed by gas chromatography-mass spectrometry (GC-MS)), myrosinase (on-gel detection) and horseradish peroxidase enzyme patterns (on-gel detection and spectrophotometry), and morphological features were examined with multi-variable statistical analysis. In addition to the several positive and negative correlations, the most outstanding phenomenon was many parameters of the hairy root clones showed dependence on the organ of origin. Among others, the daily growth index, sinigrin, glucobrassicin, 3-phenylpropionitrile, indole-3-acetonitrile and horseradish peroxidase values showed significantly higher levels in horseradish hairy root cultures initiated from leaf blades.


Subject(s)
Armoracia/chemistry , Armoracia/enzymology , Glucosinolates/chemistry , Isothiocyanates/chemistry , Plant Roots/chemistry , Plant Roots/enzymology , Armoracia/metabolism , Glucosinolates/metabolism , Glucosinolates/pharmacology , Isothiocyanates/metabolism , Isothiocyanates/pharmacology , Metabolic Networks and Pathways , Molecular Structure , Organ Specificity , Plant Roots/metabolism
16.
BMC Complement Altern Med ; 18(1): 227, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30053847

ABSTRACT

BACKGROUND: The increasing number of multidrug-resistant bacteria and the fact of antibiotic resistance is leading to a continuous need for discovering alternative treatments against infections, e.g. in the case of respiratory tract diseases. Essential oils (EOs), because of their volatility, can easily reach both the upper and lower parts of the respiratory tract via inhalation. Therefore, the aim of the present study was the antibacterial evaluation of clove, cinnamon bark, eucalyptus, thyme, scots pine, peppermint, and citronella EOs against respiratory tract pathogens such as Streptococcus pneumoniae, S. mutans, S. pyogenes, Haemophilus influenzae, H. parainfluenzae, and Moraxella catarrhalis. Furthermore, we wanted to compare the antibacterial effect of these EOs in two different test systems to provide data for the development of an appropriate product formulation. METHODS: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with in vitro vapor phase test (VPT) and broth macrodilution test (BDT). The chemical and percentage compositions of the EOs were determined by GC-MS and GC-FID analysis. RESULTS: Among the EOs, thyme was the most effective against S. mutans (MIC: 0.04 mg/mL in BDT, but cinnamon bark and clove oils also presented high inhibition in liquid medium with MIC values of 0.06 mg/mL and 0.1 mg/mL against S. pneumoniae and S. pyogenes, respectively. M. catarrhalis was the most sensitive to thyme EO (MIC: 0.09 mg/mL). Cinnamon bark EO was the most effective against Haemophilus spp. (MIC: 0.06 mg/mL). In the VPT, cinnamon bark was the most effective oil against all investigated pathogens with MIC values in the range of 15.62-90 µl/L. Surprisingly, the eucalyptus and scots pine showed weak activity against the test bacteria in both test systems. CONCLUSIONS: The EO of thyme, clove and cinnamon bark may provide promising antibacterial activity against respiratory tract pathogens either in liquid medium or in vapor phase. However, their effect is lower than that of the reference antibiotics. The combination of EOs and antibiotics may be beneficial in the alternative treatment of respiratory tract diseases. In vivo studies are necessary to calculate the effective dose of EOs in patients and determine their possible side effects and toxicity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Respiratory Tract Infections/microbiology , Anti-Bacterial Agents/chemistry , Humans , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Plant Extracts/chemistry
17.
Appl Environ Microbiol ; 82(20): 6158-6166, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27520816

ABSTRACT

Our study investigated the antimicrobial action of clove (Syzygium aromaticum) essential oil (EO) on the zoonotic pathogen Campylobacter jejuni After confirming the clove essential oil's general antibacterial effect, we analyzed the reference strain Campylobacter jejuni NCTC 11168. Phenotypic, proteomic, and transcriptomic methods were used to reveal changes in cell morphology and functions when exposed to sublethal concentrations of clove EO. The normally curved cells showed markedly straightened and shrunken morphology on the scanning electron micrographs as a result of stress. Although, oxidative stress, as a generally accepted response to essential oils, was also present, the dominance of a general stress response was demonstrated by reverse transcription-PCR (RT-PCR). The results of RT-PCR and two-dimensional (2D) PAGE revealed that clove oil perturbs the expression of virulence-associated genes taking part in the synthesis of flagella, PEB1, PEB4, lipopolysaccharide (LPS), and serine protease. Loss of motility was also detected by a phenotypic test. Bioautographic analysis revealed that besides its major component, eugenol, at least four other spots of clove EO possessed bactericidal activity against C. jejuni Our findings show that clove EO has a marked antibacterial and potential virulence-modulating effect on C. jejuni IMPORTANCE: This study demonstrates that the components of clove essential oil influence not only the expression of general stress genes but also the expression of virulence-associated genes. Based on this finding, alternative strategies can be worked on to control this important foodborne pathogen.


Subject(s)
Anti-Bacterial Agents/pharmacology , Campylobacter jejuni/drug effects , Oils, Volatile/pharmacology , Syzygium/chemistry , Anti-Bacterial Agents/analysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Campylobacter jejuni/metabolism , Campylobacter jejuni/pathogenicity , Eugenol/analysis , Eugenol/pharmacology , Oils, Volatile/analysis , Virulence/drug effects
18.
Anal Chem ; 88(16): 8202-9, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27433973

ABSTRACT

A nontargeted, effect-directed screening (bioprofiling) and a subsequent highly targeted characterization of antibacterial compounds from plant matrices is demonstrated on the example of Solidago virgaurea root extracts. The procedure comprises high-performance thin-layer chromatography (HPTLC) coupled with six bacterial bioassays including two plant pathogens, a radical scavenging assay, an acetylcholinesterase assay as well as in situ and ex situ mass spectrometric analyses. In situ mass spectra were directly recorded from the adsorbent using the Direct Analysis in Real Time interface (HPTLC-DART-MS), whereas ex situ mass spectra were recorded using an elution head-based interface (HPTLC-ESI-MS). For further bioassay-guided isolation of the main antimicrobial compounds, flash chromatographic fractionation and semipreparative high-performance liquid chromatographic purification were used and nuclear magnetic resonance data allowed the identification of the unknown antimicrobial compounds as 2Z,8Z- and 2E,8Z-matricaria esters. The discovered antibacterial activity was confirmed and specified by a luminometric assay and as minimal inhibitory concentration in the liquid phase.


Subject(s)
Anti-Bacterial Agents/analysis , Plant Extracts/chemistry , Solidago/chemistry , Spectrometry, Mass, Electrospray Ionization , Anti-Bacterial Agents/isolation & purification , Cholinesterase Inhibitors/analysis , Cholinesterase Inhibitors/isolation & purification , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Magnetic Resonance Spectroscopy , Plant Roots/chemistry , Plant Roots/metabolism , Solid Phase Microextraction , Solidago/metabolism
19.
Acta Biol Hung ; 67(2): 205-14, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27165531

ABSTRACT

Essential oils (EOs) can be used as alternative or complementary antifungal agents against human pathogenic moulds and yeasts. To reduce the effective dose of antimicrobial agents, EOs are combined which can lead to synergistic or additive effect. In this study the anti-yeast and anti-mould activities of selected EOs were investigated, alone and in combinations, against clinical isolates of Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus, Rhizopus microsporus, Fusarium solani and Lichtheimia corymbifera. Minimum inhibitory concentrations (MICs) were determined for the EOs of cinnamon, citronella, clove, spearmint and thyme. To investigate the combination effect of the EOs, fractional inhibitory concentrations (FICs) were defined by the checkerboard method and the type of interaction was determined by the FIC index (FICI). FIC index below 0.5 was considered as synergism and between 0.5 and 1 as additive effect. Strongest antifungal activity was showed by thyme EO with MIC values below 1.0 mg/ml. Combination of EOs resulted in additive or indifferent effect, with occasional "borderline synergism". The best combination was cinnamon with clove leading to additive effect in all cases.


Subject(s)
Antifungal Agents/chemistry , Oils, Volatile/chemistry , Microbial Sensitivity Tests
20.
Nat Prod Commun ; 11(11): 1705-1708, 2016 Nov.
Article in English | MEDLINE | ID: mdl-30475512

ABSTRACT

Components of cinnamon bark, rosemary, clove and thyme essential oils were screened for antioxidant and antibacterial activity utilizing thin-layer chromatography (TLC) coupled with the DPPH(.) test and direct bioautography using Bacillus subtilis cells. The compounds in the active chromatographic zones were identified by solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) after their elution. Seven antibacterial components were found: cinnamaldehyde and eugenol in cinnamon bark oil, 1,8-cineole, camphor, borneol and α-terpineol in rosemary oil, eugenol in clove oil and thymol in thyme oil. Only two of them, thymol and eugenol displayed a free radical scavenging effect.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Biosensing Techniques/methods , Chromatography, Thin Layer/methods , Gas Chromatography-Mass Spectrometry/methods , Oils, Volatile/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...