Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 31(6): 107615, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32402278

ABSTRACT

The inflammasomes control the bioactivity of pro-inflammatory cytokines of the interleukin (IL)-1 family. The inflammasome assembled by NLRP3 has been predominantly studied in homogeneous cell populations in vitro, neglecting the influence of cellular interactions that occur in vivo. Here, we show that platelets boost the inflammasome capacity of human macrophages and neutrophils and are critical for IL-1 production by monocytes. Platelets license NLRP3 transcription, thereby enhancing ASC oligomerization, caspase-1 activity, and IL-1ß secretion. Platelets influence IL-1ß production in vivo, and blood platelet counts correlate with plasmatic IL-1ß levels in malaria. Furthermore, we reveal an enriched platelet gene signature among the highest-expressed transcripts in IL-1ß-driven autoinflammatory diseases. The platelet effect is independent of cell-to-cell contact, platelet-derived lipid mediators, purines, nucleic acids, and a host of platelet cytokines, and it involves the triggering of calcium-sensing receptors on macrophages. Hence, platelets provide an additional layer of regulation of inflammasomes and IL-1-driven inflammation.


Subject(s)
Blood Platelets/immunology , Immunity, Innate/immunology , Inflammasomes/metabolism , Interleukin-1beta/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans
2.
Cancers (Basel) ; 11(6)2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31212989

ABSTRACT

Circulating tumor cells (CTCs) hold great potential to answer key questions of how non-small cell lung cancer (NSCLC) evolves and develops resistance upon anti-PD-1/PD-L1 treatment. Currently, their clinical utility in NSCLC is compromised by a low detection rate with the established, Food and Drug Administration (FDA)-approved, EpCAM-based CellSearch® System. We tested an epitope-independent method (ParsortixTM system) and utilized it to assess PD-L1 expression of CTCs from NSCLC patients. We prospectively collected 127 samples, 97 of which were analyzed with the epitope-independent system in comparison to the CellSearch system. CTCs were determined by immunocytochemistry as intact, nucleated, CD45-, pankeratins (K)+ cells. PD-L1 status of CTCs was evaluated from 89 samples. With the epitope-independent system, ≥1 CTC per blood sample was detected in 59 samples (61%) compared to 31 samples (32%) with the EpCAM-based system. Upon PD-L1 staining, 47% of patients harbored only PD-L1+CTCs, 47% had PD-L1+ and PD-L1-CTCs, and only 7% displayed exclusively PD-L1-CTCs. The percentage of PD-L1+CTCs did not correlate with the percentage of PD-L1+ in biopsies determined by immunohistochemistry (p = 0.179). Upon disease progression, all patients showed an increase in PD-L1+CTCs, while no change or a decrease in PD-L1+CTCs was observed in responding patients (n = 11; p = 0.001). Our data show a considerable heterogeneity in the PD-L1 status of CTCs from NSCLC patients. An increase of PD-L1+CTCs holds potential to predict resistance to PD-1/PD-L1 inhibitors.

3.
FASEB J ; 33(9): 10104-10115, 2019 09.
Article in English | MEDLINE | ID: mdl-31199668

ABSTRACT

The alarmin S100A8/A9 is implicated in sterile inflammation-induced bone resorption and has been shown to increase the bone-resorptive capacity of mature osteoclasts. Here, we investigated the effects of S100A9 on osteoclast differentiation from human CD14+ circulating precursors. Hereto, human CD14+ monocytes were isolated and differentiated toward osteoclasts with M-CSF and receptor activator of NF-κB (RANK) ligand (RANKL) in the presence or absence of S100A9. Tartrate-resistant acid phosphatase staining showed that exposure to S100A9 during monocyte-to-osteoclast differentiation strongly decreased the numbers of multinucleated osteoclasts. This was underlined by a decreased resorption of a hydroxyapatite-like coating. The thus differentiated cells showed a high mRNA and protein production of proinflammatory factors after 16 h of exposure. In contrast, at d 4, the cells showed a decreased production of the osteoclast-promoting protein TNF-α. Interestingly, S100A9 exposure during the first 16 h of culture only was sufficient to reduce osteoclastogenesis. Using fluorescently labeled RANKL, we showed that, within this time frame, S100A9 inhibited the M-CSF-mediated induction of RANK. Chromatin immunoprecipitation showed that this was associated with changes in various histone marks at the epigenetic level. This S100A9-induced reduction in RANK was in part recovered by blocking TNF-α but not IL-1. Together, our data show that S100A9 impedes monocyte-to-osteoclast differentiation, probably via a reduction in RANK expression.-Di Ceglie, I., Blom, A. B., Davar, R., Logie, C., Martens, J. H. A., Habibi, E., Böttcher, L.-M., Roth, J., Vogl, T., Goodyear, C. S., van der Kraan, P. M., van Lent, P. L., van den Bosch, M. H. The alarmin S100A9 hampers osteoclast differentiation from human circulating precursors by reducing the expression of RANK.


Subject(s)
Calgranulin B/physiology , Monocytes/drug effects , Osteoclasts/cytology , Receptor Activator of Nuclear Factor-kappa B/biosynthesis , Bone Resorption , Calgranulin B/pharmacology , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Histone Code , Humans , Inflammation/chemically induced , Inflammation/genetics , Interleukin-1/antagonists & inhibitors , Lipopolysaccharide Receptors/analysis , Macrophage Colony-Stimulating Factor/pharmacology , Monocytes/cytology , RANK Ligand/pharmacology , Receptor Activator of Nuclear Factor-kappa B/genetics , Recombinant Proteins/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors
4.
Cancer Cell ; 34(6): 996-1011.e8, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30537516

ABSTRACT

Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Transcriptome , Adult , Biomarkers, Tumor/metabolism , Evolution, Molecular , Humans , Male , Middle Aged , Mutation , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Risk Factors , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...