Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Commun Biol ; 6(1): 487, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165099

ABSTRACT

Latency is a major barrier towards virus elimination in HIV-1-infected individuals. Yet, the mechanisms that contribute to the maintenance of HIV-1 latency are incompletely understood. Here we describe the Schlafen 12 protein (SLFN12) as an HIV-1 restriction factor that establishes a post-transcriptional block in HIV-1-infected cells and thereby inhibits HIV-1 replication and virus reactivation from latently infected cells. The inhibitory activity is dependent on the HIV-1 codon usage and on the SLFN12 RNase active sites. Within HIV-1-infected individuals, SLFN12 expression in PBMCs correlated with HIV-1 plasma viral loads and proviral loads suggesting a link with the general activation of the immune system. Using an RNA FISH-Flow HIV-1 reactivation assay, we demonstrate that SLFN12 expression is enriched in infected cells positive for HIV-1 transcripts but negative for HIV-1 proteins. Thus, codon-usage dependent translation inhibition of HIV-1 proteins participates in HIV-1 latency and can restrict the amount of virus release after latency reversal.


Subject(s)
CD4-Positive T-Lymphocytes , HIV-1 , Codon Usage , HIV-1/physiology , RNA, Viral/genetics , Virus Latency/genetics
2.
Nat Commun ; 13(1): 4725, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953468

ABSTRACT

Ample evidence indicates that codon usage bias regulates gene expression. How viruses, such as the emerging mosquito-borne Chikungunya virus (CHIKV), express their genomes at high levels despite an enrichment in rare codons remains a puzzling question. Using ribosome footprinting, we analyze translational changes that occur upon CHIKV infection. We show that CHIKV infection induces codon-specific reprogramming of the host translation machinery to favor the translation of viral RNA genomes over host mRNAs with an otherwise optimal codon usage. This reprogramming was mostly apparent at the endoplasmic reticulum, where CHIKV RNAs show high ribosome occupancy. Mechanistically, it involves CHIKV-induced overexpression of KIAA1456, an enzyme that modifies the wobble U34 position in the anticodon of tRNAs, which is required for proper decoding of codons that are highly enriched in CHIKV RNAs. Our findings demonstrate an unprecedented interplay of viruses with the host tRNA epitranscriptome to adapt the host translation machinery to viral production.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Chikungunya virus/genetics , Codon/genetics , Codon/metabolism , Humans , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
3.
NAR Genom Bioinform ; 4(1): lqac018, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35265837

ABSTRACT

Living organisms are continuously challenged by changes in their environment that can propagate to stresses at the cellular level, such as rapid changes in osmolarity or oxygen tension. To survive these sudden changes, cells have developed stress-responsive mechanisms that tune cellular processes. The response of Saccharomyces cerevisiae to osmostress includes a massive reprogramming of gene expression. Identifying the inherent features of stress-responsive genes is of significant interest for understanding the basic principles underlying the rewiring of gene expression upon stress. Here, we generated a comprehensive catalog of osmostress-responsive genes from 5 independent RNA-seq experiments. We explored 30 features of yeast genes and found that 25 (83%) were distinct in osmostress-responsive genes. We then identified 13 non-redundant minimal osmostress gene traits and used statistical modeling to rank the most stress-predictive features. Intriguingly, the most relevant features of osmostress-responsive genes are the number of transcription factors targeting them and gene conservation. Using data on HeLa samples, we showed that the same features that define yeast osmostress-responsive genes can predict osmostress-responsive genes in humans, but with changes in the rank-ordering of feature-importance. Our study provides a holistic understanding of the basic principles of the regulation of stress-responsive gene expression across eukaryotes.

4.
Gigascience ; 10(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34891161

ABSTRACT

BACKGROUND: Fusion genes are typically identified by RNA sequencing (RNA-seq) without elucidating the causal genomic breakpoints. However, non-poly(A)-enriched RNA-seq contains large proportions of intronic reads that also span genomic breakpoints. RESULTS: We have developed an algorithm, Dr. Disco, that searches for fusion transcripts by taking an entire reference genome into account as search space. This includes exons but also introns, intergenic regions, and sequences that do not meet splice junction motifs. Using 1,275 RNA-seq samples, we investigated to what extent genomic breakpoints can be extracted from RNA-seq data and their implications regarding poly(A)-enriched and ribosomal RNA-minus RNA-seq data. Comparison with whole-genome sequencing data revealed that most genomic breakpoints are not, or minimally, transcribed while, in contrast, the genomic breakpoints of all 32 TMPRSS2-ERG-positive tumours were present at RNA level. We also revealed tumours in which the ERG breakpoint was located before ERG, which co-existed with additional deletions and messenger RNA that incorporated intergenic cryptic exons. In breast cancer we identified rearrangement hot spots near CCND1 and in glioma near CDK4 and MDM2 and could directly associate this with increased expression. Furthermore, in all datasets we find fusions to intergenic regions, often spanning multiple cryptic exons that potentially encode neo-antigens. Thus, fusion transcripts other than classical gene-to-gene fusions are prominently present and can be identified using RNA-seq. CONCLUSION: By using the full potential of non-poly(A)-enriched RNA-seq data, sophisticated analysis can reliably identify expressed genomic breakpoints and their transcriptional effects.


Subject(s)
Genomics , RNA, Ribosomal , Gene Fusion , Genome , Sequence Analysis, RNA
5.
Sci Rep ; 11(1): 18985, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556735

ABSTRACT

The COVID-19 pandemic is raging. It revealed the importance of rapid scientific advancement towards understanding and treating new diseases. To address this challenge, we adapt an explainable artificial intelligence algorithm for data fusion and utilize it on new omics data on viral-host interactions, human protein interactions, and drugs to better understand SARS-CoV-2 infection mechanisms and predict new drug-target interactions for COVID-19. We discover that in the human interactome, the human proteins targeted by SARS-CoV-2 proteins and the genes that are differentially expressed after the infection have common neighbors central in the interactome that may be key to the disease mechanisms. We uncover 185 new drug-target interactions targeting 49 of these key genes and suggest re-purposing of 149 FDA-approved drugs, including drugs targeting VEGF and nitric oxide signaling, whose pathways coincide with the observed COVID-19 symptoms. Our integrative methodology is universal and can enable insight into this and other serious diseases.


Subject(s)
COVID-19 Drug Treatment , Drug Evaluation, Preclinical/methods , SARS-CoV-2/genetics , Antiviral Agents/therapeutic use , Artificial Intelligence , COVID-19/genetics , COVID-19/metabolism , Drug Repositioning/methods , Gene Regulatory Networks/genetics , Humans , Models, Theoretical , Pandemics , Pharmaceutical Preparations , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Signal Transduction/genetics
6.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34083438

ABSTRACT

Regulation of cell volume is essential for tissue homeostasis and cell viability. In response to hypertonic stress, cells need rapid electrolyte influx to compensate water loss and to prevent cell death in a process known as regulatory volume increase (RVI). However, the molecular component able to trigger such a process was unknown to date. Using a genome-wide CRISPR/Cas9 screen, we identified LRRC8A, which encodes a chloride channel subunit, as the gene most associated with cell survival under hypertonic conditions. Hypertonicity activates the p38 stress-activated protein kinase pathway and its downstream MSK1 kinase, which phosphorylates and activates LRRC8A. LRRC8A-mediated Cl- efflux facilitates activation of the with-no-lysine (WNK) kinase pathway, which in turn, promotes electrolyte influx via Na+/K+/2Cl- cotransporter (NKCC) and RVI under hypertonic stress. LRRC8A-S217A mutation impairs channel activation by MSK1, resulting in reduced RVI and cell survival. In summary, LRRC8A is key to bidirectional osmotic stress responses and cell survival under hypertonic conditions.


Subject(s)
Cell Size , Chloride Channels/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Biological Transport , CRISPR-Cas Systems , Cell Death , Cell Survival , HeLa Cells , Humans , Osmotic Pressure , Phosphorylation , Potassium/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Sodium/metabolism
7.
Bioinformatics ; 36(Suppl_2): i804-i812, 2020 12 30.
Article in English | MEDLINE | ID: mdl-33381834

ABSTRACT

MOTIVATION: Molecular interactions have been successfully modeled and analyzed as networks, where nodes represent molecules and edges represent the interactions between them. These networks revealed that molecules with similar local network structure also have similar biological functions. The most sensitive measures of network structure are based on graphlets. However, graphlet-based methods thus far are only applicable to unweighted networks, whereas real-world molecular networks may have weighted edges that can represent the probability of an interaction occurring in the cell. This information is commonly discarded when applying thresholds to generate unweighted networks, which may lead to information loss. RESULTS: We introduce probabilistic graphlets as a tool for analyzing the local wiring patterns of probabilistic networks. To assess their performance compared to unweighted graphlets, we generate synthetic networks based on different well-known random network models and edge probability distributions and demonstrate that probabilistic graphlets outperform their unweighted counterparts in distinguishing network structures. Then we model different real-world molecular interaction networks as weighted graphs with probabilities as weights on edges and we analyze them with our new weighted graphlets-based methods. We show that due to their probabilistic nature, probabilistic graphlet-based methods more robustly capture biological information in these data, while simultaneously showing a higher sensitivity to identify condition-specific functions compared to their unweighted graphlet-based method counterparts. AVAILABILITYAND IMPLEMENTATION: Our implementation of probabilistic graphlets is available at https://github.com/Serdobe/Probabilistic_Graphlets. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Probability
8.
PLoS Pathog ; 16(8): e1008346, 2020 08.
Article in English | MEDLINE | ID: mdl-32764824

ABSTRACT

Viruses subvert macromolecular pathways in infected host cells to aid in viral gene amplification or to counteract innate immune responses. Roles for host-encoded, noncoding RNAs, including microRNAs, have been found to provide pro- and anti-viral functions. Recently, circular RNAs (circRNAs), that are generated by a nuclear back-splicing mechanism of pre-mRNAs, have been implicated to have roles in DNA virus-infected cells. This study examines the circular RNA landscape in uninfected and hepatitis C virus (HCV)-infected liver cells. Results showed that the abundances of distinct classes of circRNAs were up-regulated or down-regulated in infected cells. Identified circRNAs displayed pro-viral effects. One particular up-regulated circRNA, circPSD3, displayed a very pronounced effect on viral RNA abundances in both hepatitis C virus- and Dengue virus-infected cells. Though circPSD3 has been shown to bind factor eIF4A3 that modulates the cellular nonsense-mediated decay (NMD) pathway, circPSD3 regulates RNA amplification in a pro-viral manner at a post-translational step, while eIF4A3 exhibits the anti-viral property of the NMD pathway. Findings from the global analyses of the circular RNA landscape argue that pro-, and likely, anti-viral functions are executed by circRNAs that modulate viral gene expression as well as host pathways. Because of their long half-lives, circRNAs likely play hitherto unknown, important roles in viral pathogenesis.


Subject(s)
Carcinoma, Hepatocellular/virology , Hepacivirus/genetics , Hepatitis C/complications , Liver Neoplasms/virology , Proviruses/genetics , RNA, Circular/genetics , RNA, Viral/genetics , Virus Replication , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Gene Expression Profiling , Hepatitis C/virology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Nonsense Mediated mRNA Decay , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Nucleic Acids Res ; 48(7): 3455-3475, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32064518

ABSTRACT

Cells have the ability to sense, respond and adapt to environmental fluctuations. Stress causes a massive reorganization of the transcriptional program. Many examples of histone post-translational modifications (PTMs) have been associated with transcriptional activation or repression under steady-state growth conditions. Comparatively less is known about the role of histone PTMs in the cellular adaptive response to stress. Here, we performed high-throughput genetic screenings that provide a novel global map of the histone residues required for transcriptional reprogramming in response to heat and osmotic stress. Of note, we observed that the histone residues needed depend on the type of gene and/or stress, thereby suggesting a 'personalized', rather than general, subset of histone requirements for each chromatin context. In addition, we identified a number of new residues that unexpectedly serve to regulate transcription. As a proof of concept, we characterized the function of the histone residues H4-S47 and H4-T30 in response to osmotic and heat stress, respectively. Our results uncover novel roles for the kinases Cla4 and Ste20, yeast homologs of the mammalian PAK2 family, and the Ste11 MAPK as regulators of H4-S47 and H4-T30, respectively. This study provides new insights into the role of histone residues in transcriptional regulation under stress conditions.


Subject(s)
Gene Expression Regulation, Fungal , Histone Code , Histones/chemistry , Saccharomyces cerevisiae/genetics , Stress, Physiological/genetics , Transcription, Genetic , Heat-Shock Response/genetics , Histones/genetics , Histones/metabolism , MAP Kinase Kinase Kinases/metabolism , Mutation , Nucleosomes/metabolism , Osmotic Pressure , Phosphorylation , Promoter Regions, Genetic , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcriptional Activation
10.
Cell Rep ; 27(3): 847-859.e6, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995481

ABSTRACT

Alternative splicing is a prevalent mechanism of gene regulation that is modulated in response to a wide range of extracellular stimuli. Stress-activated protein kinases (SAPKs) play a key role in controlling several steps of mRNA biogenesis. Here, we show that osmostress has an impact on the regulation of alternative splicing (AS), which is partly mediated through the action of p38 SAPK. Splicing network analysis revealed a functional connection between p38 and the spliceosome component SKIIP, whose depletion abolished a significant fraction of p38-mediated AS changes. Importantly, p38 interacted with and directly phosphorylated SKIIP, thereby altering its activity. SKIIP phosphorylation regulated AS of GADD45α, the upstream activator of the p38 pathway, uncovering a negative feedback loop involving AS regulation. Our data reveal mechanisms and targets of SAPK function in stress adaptation through the regulation of AS.


Subject(s)
Alternative Splicing , Nuclear Receptor Coactivators/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Alternative Splicing/drug effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Imidazoles/pharmacology , MAP Kinase Kinase 6/metabolism , Nuclear Receptor Coactivators/antagonists & inhibitors , Nuclear Receptor Coactivators/genetics , Osmotic Pressure , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Pyridines/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Sodium Chloride/pharmacology , Dyrk Kinases
11.
Nat Commun ; 10(1): 1298, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30899024

ABSTRACT

The highly conserved 5'-3' exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the translation compartment of membrane proteins. Importantly, for this group of mRNAs, Xrn1 stimulates transcription, mRNA translation and decay. Our results uncover a crosstalk between the three major stages of gene expression coordinated by Xrn1 to maintain appropriate levels of membrane proteins.


Subject(s)
Exoribonucleases/genetics , Gene Expression Regulation, Fungal , Membrane Proteins/genetics , Protein Biosynthesis , RNA, Messenger/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Cloning, Molecular , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Exoribonucleases/metabolism , Gene Expression , Gene Expression Profiling , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Membrane Proteins/metabolism , RNA Stability , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
12.
Genome Res ; 29(1): 18-28, 2019 01.
Article in English | MEDLINE | ID: mdl-30523037

ABSTRACT

Nuclear architecture is decisive for the assembly of transcriptional responses. However, how chromosome organization is dynamically modulated to permit rapid and transient transcriptional changes in response to environmental challenges remains unclear. Here we show that hyperosmotic stress disrupts different levels of chromosome organization, ranging from A/B compartment changes to reduction in the number and insulation of topologically associating domains (TADs). Concomitantly, transcription is greatly affected, TAD borders weaken, and RNA Polymerase II runs off from hundreds of transcription end sites. Stress alters the binding profiles of architectural proteins, which explains the disappearance of local chromatin organization. These processes are dynamic, and cells rapidly reconstitute their default chromatin conformation after stress removal, uncovering an intrinsic organization. Transcription is not required for local chromatin reorganization, while compartment recovery is partially transcription-dependent. Thus, nuclear organization in mammalian cells can be rapidly modulated by environmental changes in a reversible manner.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Osmotic Pressure , RNA Polymerase II/metabolism , Transcription, Genetic , Cell Line , Humans
13.
Cancer Res ; 78(16): 4671-4679, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29921693

ABSTRACT

Cancer invasion and metastasis are driven by epithelial-mesenchymal transition (EMT), yet the exact mechanisms that account for EMT in clinical prostate cancer are not fully understood. Expression of N-cadherin is considered a hallmark of EMT in clinical prostate cancer. In this study, we determined the molecular mechanisms associated with N-cadherin expression in patients with prostate cancer. We performed laser capture microdissection of matched N-cadherin-positive and -negative prostate cancer areas from patient samples (n = 8), followed by RNA sequencing. N-cadherin expression was significantly associated with an immune-regulatory signature including profound upregulation of indoleamine 2,3-dioxygenase (IDO1; log2-fold change = 5.1; P = 2.98E-04). Fluorescent immunostainings of patient samples confirmed expression of IDO1 protein and also its metabolite kynurenine in primarily N-cadherin-positive areas. N-cadherin-positive areas also exhibited a local decrease of intraepithelial cytotoxic (CD8+) T cells and an increase of immunosuppressive regulatory T cells (CD4+/FOXP3+). In conclusion, EMT in clinical prostate cancer is accompanied by upregulated expression of IDO1 and an increased number of regulatory T cells. These data indicate that EMT, which is an important step in tumor progression, can be protected from effective immune control in patients with prostate cancer.Significance: These findings demonstrate EMT is linked to an immunosuppressive environment in clinical prostate cancer, suggesting that patients with prostate cancer can potentially benefit from combinatorial drug therapy. Cancer Res; 78(16); 4671-9. ©2018 AACR.


Subject(s)
Cadherins/genetics , Immune Evasion/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Prostatic Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Signal Transduction , T-Lymphocytes, Regulatory/immunology
14.
BMC Cancer ; 18(1): 8, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29295717

ABSTRACT

BACKGROUND: Invasive cribriform and intraductal carcinoma (CR/IDC) is associated with adverse outcome of prostate cancer patients. The aim of this study was to determine the molecular aberrations associated with CR/IDC in primary prostate cancer, focusing on genomic instability and somatic copy number alterations (CNA). METHODS: Whole-slide images of The Cancer Genome Atlas Project (TCGA, N = 260) and the Canadian Prostate Cancer Genome Network (CPC-GENE, N = 199) radical prostatectomy datasets were reviewed for Gleason score (GS) and presence of CR/IDC. Genomic instability was assessed by calculating the percentage of genome altered (PGA). Somatic copy number alterations (CNA) were determined using Fisher-Boschloo tests and logistic regression. Primary analysis were performed on TCGA (N = 260) as discovery and CPC-GENE (N = 199) as validation set. RESULTS: CR/IDC growth was present in 80/260 (31%) TCGA and 76/199 (38%) CPC-GENE cases. Patients with CR/IDC and ≥ GS 7 had significantly higher PGA than men without this pattern in both TCGA (2.2 fold; p = 0.0003) and CPC-GENE (1.7 fold; p = 0.004) cohorts. CR/IDC growth was associated with deletions of 8p, 16q, 10q23, 13q22, 17p13, 21q22, and amplification of 8q24. CNAs comprised a total of 1299 gene deletions and 369 amplifications in the TCGA dataset, of which 474 and 328 events were independently validated, respectively. Several of the affected genes were known to be associated with aggressive prostate cancer such as loss of PTEN, CDH1, BCAR1 and gain of MYC. Point mutations in TP53, SPOP and FOXA1were also associated with CR/IDC, but occurred less frequently than CNAs. CONCLUSIONS: CR/IDC growth is associated with increased genomic instability clustering to genetic regions involved in aggressive prostate cancer. Therefore, CR/IDC is a pathologic substrate for progressive molecular tumour derangement.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , DNA Copy Number Variations , Genomic Instability , Genomics/methods , Prostatic Neoplasms/genetics , Adenocarcinoma/pathology , Aged , Carcinoma, Intraductal, Noninfiltrating/pathology , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prostatic Neoplasms/pathology
15.
PLoS Genet ; 13(11): e1007090, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29155810

ABSTRACT

Cells trigger massive changes in gene expression upon environmental fluctuations. The Hog1 stress-activated protein kinase (SAPK) is an important regulator of the transcriptional activation program that maximizes cell fitness when yeast cells are exposed to osmostress. Besides being associated with transcription factors bound at target promoters to stimulate transcriptional initiation, activated Hog1 behaves as a transcriptional elongation factor that is selective for stress-responsive genes. Here, we provide insights into how this signaling kinase functions in transcription elongation. Hog1 phosphorylates the Spt4 elongation factor at Thr42 and Ser43 and such phosphorylations are essential for the overall transcriptional response upon osmostress. The phosphorylation of Spt4 by Hog1 regulates RNA polymerase II processivity at stress-responsive genes, which is critical for cell survival under high osmostress conditions. Thus, the direct regulation of Spt4 upon environmental insults serves to stimulate RNA Pol II elongation efficiency.


Subject(s)
Gene Expression Regulation, Fungal/genetics , Osmotic Pressure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription, Genetic/genetics , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Serine/genetics , Serine/metabolism , Threonine/genetics , Threonine/metabolism , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
16.
Oncotarget ; 8(4): 6043-6056, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-27907910

ABSTRACT

The DNA mismatch repair (MMR) system corrects DNA replication mismatches thereby contributing to the maintenance of genomic stability. MMR deficiency has been observed in prostate cancer but its impact on the genomic landscape of these tumours is not known. In order to identify MMR associated mutations in prostate cancer we have performed whole genome sequencing of the MMR deficient PC346C prostate cancer cell line. We detected a total of 1196 mutations in PC346C which was 1.5-fold higher compared to a MMR proficient prostate cancer sample (G089). Of all different mutation classes, frameshifts in mononucleotide repeat (MNR) sequences were significantly enriched in the PC346C sample. As a result, a selection of genes with frameshift mutations in MNR was further assessed regarding its mutational status in a comprehensive panel of prostate, ovarian, endometrial and colorectal cancer cell lines. We identified PRRT2 and DAB2IP to be frequently mutated in MMR deficient cell lines, colorectal and endometrial cancer patient samples. Further characterization of PRRT2 revealed an important role of this gene in cancer biology. Both normal prostate cell lines and a colorectal cancer cell line showed increased proliferation, migration and invasion when expressing the mutated form of PRRT2 (ΔPRRT2). The wild-type PRRT2 (PRRT2wt) had an inhibitory effect in proliferation, consistent with the low expression level of PRRT2 in cancer versus normal prostate samples.


Subject(s)
Membrane Proteins/genetics , Microsatellite Instability , Neoplasms/genetics , Nerve Tissue Proteins/genetics , Whole Genome Sequencing/methods , ras GTPase-Activating Proteins/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , DNA Mismatch Repair , Endometrial Neoplasms/genetics , Female , Frameshift Mutation , Humans , Male , Microsatellite Repeats , Ovarian Neoplasms/genetics , Prostatic Neoplasms/genetics
17.
Science ; 354(6309): 229-232, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27738172

ABSTRACT

Living organisms have evolved protein phosphorylation, a rapid and versatile mechanism that drives signaling and regulates protein function. We report the phosphoproteomes of 18 fungal species and a phylogenetic-based approach to study phosphosite evolution. We observe rapid divergence, with only a small fraction of phosphosites conserved over hundreds of millions of years. Relative to recently acquired phosphosites, ancient sites are enriched at protein interfaces and are more likely to be functionally important, as we show for sites on H2A1 and eIF4E. We also observe a change in phosphorylation motif frequencies and kinase activities that coincides with the whole-genome duplication event. Our results provide an evolutionary history for phosphosites and suggest that rapid evolution of phosphorylation can contribute strongly to phenotypic diversity.


Subject(s)
Evolution, Molecular , Fungal Proteins/metabolism , Fungi/metabolism , Phosphoproteins/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Fungal Proteins/classification , Fungal Proteins/genetics , Fungi/genetics , Genome, Fungal , Genomics , Phenotype , Phosphoproteins/classification , Phosphoproteins/genetics , Phosphorylation/genetics , Phylogeny , Protein Serine-Threonine Kinases/classification , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteome/genetics , Proteome/metabolism , Signal Transduction
18.
Oncotarget ; 7(43): 70669-70684, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27683107

ABSTRACT

Phosphodiesterase 4D7 was recently shown to be specifically over-expressed in localized prostate cancer, raising the question as to which regulatory mechanisms are involved and whether other isoforms of this gene family (PDE4D) are affected under the same conditions.We investigated PDE4D isoform composition in prostatic tissues using a total of seven independent expression datasets and also included data on DNA methylation, copy number and AR and ERG binding in PDE4D promoters to gain insight into their effect on PDE4D transcription.We show that expression of PDE4D isoforms is consistently altered in primary human prostate cancer compared to benign tissue, with PDE4D7 being up-regulated while PDE4D5 and PDE4D9 are down-regulated. Disease progression is marked by an overall down-regulation of long PDE4D isoforms, while short isoforms (PDE4D1/2) appear to be relatively unaffected. While these alterations seem to be independent of copy number alterations in the PDE4D locus and driven by AR and ERG binding, we also observed increased DNA methylation in the promoter region of PDE4D5, indicating a long lasting alteration of the isoform composition in prostate cancer tissues.We propose two independent metrics that may serve as diagnostic and prognostic markers for prostate disease: (PDE4D7 - PDE4D5) provides an effective means for distinguishing PCa from normal adjacent prostate, whereas PDE4D1/2 - (PDE4D5 + PDE4D7 + PDE4D9) offers strong prognostic potential to detect aggressive forms of PCa and is associated with metastasis free survival. Overall, our findings highlight the relevance of PDE4D as prostate cancer biomarker and potential drug target.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Neoplasm Metastasis/genetics , Promoter Regions, Genetic , Prostatic Neoplasms/genetics , Biomarkers, Tumor/genetics , DNA Methylation/genetics , Down-Regulation , Follow-Up Studies , Gene Dosage , Humans , Isoenzymes/genetics , Kaplan-Meier Estimate , Male , Prognosis , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Transcriptional Regulator ERG/genetics , Up-Regulation
19.
Br J Cancer ; 115(6): 674-81, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27537383

ABSTRACT

BACKGROUND: Both taxanes, docetaxel and cabazitaxel, are effective treatments for metastatic castration-resistant prostate cancer (mCRPC). However, resistance to taxanes is common. Our objective was to investigate mechanisms of taxane resistance in prostate cancer. METHODS: Two docetaxel-resistant patient-derived xenografts (PDXs) of CRPC were established (PC339-DOC and PC346C-DOC) in male athymic nude mice by frequent intraperitoneal administrations of docetaxel. Next-generation sequencing was performed on PDX tissue pre- and post-docetaxel resistance and gene expression profiles were compared. [(14)C]-docetaxel and [(14)C]-cabazitaxel uptake assays in vitro and cytotoxicity assays were performed to validate direct involvement of transporter genes in taxane sensitivity. RESULTS: Organic anion-transporting polypeptide (SLCO1B3), an influx transporter of docetaxel, was significantly downregulated in PC346C-DOC tumours. In accordance with this finding, intratumoural concentrations of docetaxel and cabazitaxel were significantly decreased in PC346C-DOC as compared with levels in chemotherapy-naive PC346C tumours. In addition, silencing of SLCO1B3 in chemo-naive PC346C resulted in a two-fold decrease in intracellular concentrations of both taxanes. Overexpression of SLCO1B3 showed higher sensitivity to docetaxel and cabazitaxel. CONCLUSIONS: The SLCO1B3 determines intracellular concentrations of docetaxel and cabazitaxel and consequently influences taxane efficacy. Loss of the drug transporter SLCO1B3 may drive taxane resistance in prostate cancer.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Drug Resistance, Neoplasm/physiology , Neoplasm Proteins/physiology , Organic Anion Transporters, Sodium-Independent/physiology , Prostatic Neoplasms/drug therapy , Taxoids/pharmacology , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Androgens , Androstenes/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/therapeutic use , Benzamides , Biological Transport , Cell Line, Tumor , Docetaxel , Drug Resistance, Multiple/genetics , Drug Resistance, Multiple/physiology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Heterografts , Humans , Male , Mice, Nude , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasms, Hormone-Dependent/drug therapy , Neoplasms, Hormone-Dependent/metabolism , Neoplasms, Hormone-Dependent/pathology , Nitriles , Organic Anion Transporters, Sodium-Independent/biosynthesis , Organic Anion Transporters, Sodium-Independent/genetics , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA Interference , RNA, Small Interfering/pharmacology , Solute Carrier Organic Anion Transporter Family Member 1B3 , Taxoids/pharmacokinetics , Taxoids/therapeutic use
20.
Cell Stem Cell ; 19(1): 38-51, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27292189

ABSTRACT

The intestinal stem cell niche provides cues that actively maintain gut homeostasis. Dysregulation of these cues may compromise intestinal regeneration upon tissue insult and/or promote tumor growth. Here, we identify secreted phospholipases A2 (sPLA2s) as stem cell niche factors with context-dependent functions in the digestive tract. We show that group IIA sPLA2, a known genetic modifier of mouse intestinal tumorigenesis, is expressed by Paneth cells in the small intestine, while group X sPLA2 is expressed by Paneth/goblet-like cells in the colon. During homeostasis, group IIA/X sPLA2s inhibit Wnt signaling through intracellular activation of Yap1. However, upon inflammation they are secreted into the intestinal lumen, where they promote prostaglandin synthesis and Wnt signaling. Genetic ablation of both sPLA2s improves recovery from inflammation but increases colon cancer susceptibility due to release of their homeostatic Wnt-inhibitory role. This "trade-off" effect suggests sPLA2s have important functions as genetic modifiers of inflammation and colon cancer.


Subject(s)
Group II Phospholipases A2/metabolism , Group X Phospholipases A2/metabolism , Homeostasis , Inflammation/pathology , Intestinal Neoplasms/enzymology , Intestinal Neoplasms/pathology , Intestines/pathology , Stem Cell Niche , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Differentiation , Cell Lineage , Dinoprostone/biosynthesis , Inflammation/enzymology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Intestinal Neoplasms/genetics , Intracellular Space/metabolism , Mice, Inbred C57BL , Organoids/metabolism , Paneth Cells/enzymology , Paneth Cells/pathology , Phosphoproteins/metabolism , Phosphorylation , Stem Cells/pathology , Wnt Signaling Pathway , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...