Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Diagnostics (Basel) ; 12(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36292215

ABSTRACT

Tumour-infiltrating lymphocytes (TILs) are considered to have prognostic and predictive value for patients with early breast cancer. We examined 1166 breast cancer patients from a prospective, multicentre cohort (Prognostic Assessment in Routine Application (PiA), n = 1270, NCT01592825) following recommendations from the International TILs Working Group. TIL quantification was performed using predefined groups and as a continuous variable in 10% increments. The primary objective was the distribution of TILs in different breast cancer types. The second objective was the association with the recurrence-free interval (RFI) and overall survival (OS). Stromal infiltration with more than 60% TILs appeared in 2% of hormone receptor (HR)-positive and HER2-negative tumours, in 9.8% of HER2-positive tumours (any HR) and 19.4% of triple-negative breast cancers (TNBCs). Each 10% increment was associated with an improvement in the prognosis in HER2-positive samples (RFI, hazard ratio 0.773, 95% CI 0.587-1.017; OS, hazard ratio 0.700, 95% CI 0.523-0.937). When defining exploratory cut-offs for TILs, the use of a 30% threshold for the HR-positive and HER2-negative group, a 20% threshold for the HER2 group and a 60% threshold for the TNBC group appeared to be the most suitable. TILs bore prognostic value, especially in HER2-positive breast cancer. For clinical use, additional research on the components of immune infiltration might be reasonable.

2.
Pathologe ; 42(Suppl 1): 69-75, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33721057

ABSTRACT

BACKGROUND: Autopsy is an important tool for understanding the pathogenesis of diseases, including COVID-19. MATERIAL AND METHODS: On 15 April 2020, together with the German Society of Pathology and the Federal Association of German Pathologists, the German Registry of COVID-19 Autopsies (DeRegCOVID) was launched ( www.DeRegCOVID.ukaachen.de ). Building on this, the German Network for Autopsies in Pandemics (DEFEAT PANDEMIcs) was established on 1 September 2020. RESULTS: The main goal of DeRegCOVID is to collect and distribute de facto anonymized data on potentially all autopsies of people who have died from COVID-19 in Germany in order to meet the need for centralized, coordinated, and structured data collection and reporting during the pandemic. The success of the registry strongly depends on the willingness of the respective centers to report the data, which has developed very positively so far and requires special thanks to all participating centers. The rights to own data and biomaterials (stored decentrally) remain with each respective center. The DEFEAT PANDEMIcs network expands on this and aims to strengthen harmonization and standardization as well as nationwide implementation and cooperation in the field of pandemic autopsies. CONCLUSIONS: The extraordinary cooperation in the field of autopsies in Germany during the COVID-19 pandemic is impressively demonstrated by the establishment of DeRegCOVID, the merger of the registry of neuropathology (CNS-COVID19) with DeRegCOVID and the establishment of the autopsy network DEFEAT PANDEMIcs. It gives a strong signal for the necessity, readiness, and expertise to jointly help manage current and future pandemics by autopsy-derived knowledge.


Subject(s)
COVID-19 , Pandemics , Autopsy , Humans , Registries , SARS-CoV-2
3.
Pathologe ; 42(2): 216-223, 2021 Mar.
Article in German | MEDLINE | ID: mdl-33594614

ABSTRACT

BACKGROUND: Autopsy is an important tool for understanding the pathogenesis of diseases, including COVID-19. MATERIAL AND METHODS: On 15 April 2020, together with the German Society of Pathology and the Federal Association of German Pathologists, the German Registry of COVID-19 Autopsies (DeRegCOVID) was launched ( www.DeRegCOVID.ukaachen.de ). Building on this, the German Network for Autopsies in Pandemics (DEFEAT PANDEMIcs) was established on 1 September 2020. RESULTS: The main goal of DeRegCOVID is to collect and distribute de facto anonymized data on potentially all autopsies of people who have died from COVID-19 in Germany in order to meet the need for centralized, coordinated, and structured data collection and reporting during the pandemic. The success of the registry strongly depends on the willingness of the respective centers to report the data, which has developed very positively so far and requires special thanks to all participating centers. The rights to own data and biomaterials (stored decentrally) remain with each respective center. The DEFEAT PANDEMIcs network expands on this and aims to strengthen harmonization and standardization as well as nationwide implementation and cooperation in the field of pandemic autopsies. CONCLUSIONS: The extraordinary cooperation in the field of autopsies in Germany during the COVID-19 pandemic is impressively demonstrated by the establishment of DeRegCOVID, the merger of the registry of neuropathology (CNS-COVID19) with DeRegCOVID and the establishment of the autopsy network DEFEAT PANDEMIcs. It gives a strong signal for the necessity, readiness, and expertise to jointly help manage current and future pandemics by autopsy-derived knowledge.


Subject(s)
COVID-19 , Pandemics , Autopsy , Humans , Registries , SARS-CoV-2
4.
Breast Care (Basel) ; 16(6): 637-647, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35082572

ABSTRACT

INTRODUCTION: Triple-negative breast cancer (TNBC) is considered the most aggressive type of breast cancer (BC) with limited options for therapy. TNBC is a heterogeneous disease and tumors have been classified into TNBC subtypes using gene expression profiling to distinguish basal-like 1, basal-like 2, immunomodulatory, mesenchymal, mesenchymal stem-like, luminal androgen receptor (LAR), and one nonclassifiable group (called unstable). OBJECTIVES: The aim of this study was to verify the clinical relevance of molecular subtyping of TNBCs to improve the individual indication of systemic therapy. PATIENTS AND METHODS: Molecular subtyping was performed in 124 (82%) of 152 TNBC tumors that were obtained from a prospective, multicenter cohort including 1,270 histopathologically confirmed invasive, nonmetastatic BCs (NCT01592825). Treatment was guideline-based. TNBC subtypes were correlated with recurrence-free interval (RFI) and overall survival (OS) after 5 years of observation. RESULTS: Using PAM50 analysis, 87% of the tumors were typed as basal with an inferior clinical outcome compared to patients with nonbasal tumors. Using the TNBCtype-6 classifier, we identified 23 (15%) of TNBCs as LAR subtype. After standard adjuvant or neoadjuvant chemotherapy, patients with LAR subtype showed the most events for 5-year RFI (66.7 vs. 80.6%) and the poorest probability of 5-year OS (60.0 vs. 84.4%) compared to patients with non-LAR disease (RFI: adjusted hazard ratio [aHR] = 1.87, 95% confidence interval [CI] 0.69-5.05, p = 0.211; OS: aHR = 2.74, 95% CI 1.06-7.10, p = 0.037). CONCLUSION: Molecular analysis and subtyping of TNBC may be relevant to identify patients with LAR subtype. These cancers seem to be less sensitive to conventional chemotherapy, and new treatment options, including androgen receptor-blocking agents and immune checkpoint inhibitors, have to be explored.

5.
Oncotarget ; 10(20): 1975-1992, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30956778

ABSTRACT

BACKGROUND: Genetic factors play a substantial role in breast cancer etiology. Genes encoding proteins that have key functions in the DNA damage response, such as p53 and its inhibitors MDM2 and MDMX, are most likely candidates to harbor allelic variants that influence breast cancer susceptibility. The aim of our study was to comprehensively analyze the impact of SNPs in the TP53, MDM2, and MDMX genes in conjunction with TP53 mutational status regarding the onset and progression of breast cancer. METHODS: In specimen from 815 breast cancer patients, five SNPs within the selected genes were analyzed: TP53 - Arg72Pro (rs1042522), MDM2 - SNP285 (rs2279744), SNP309 (rs117039649); MDMX - SNP31826 (rs1563828), and SNP34091 (rs4245739). Classification of the tumors was evaluated by histomorphology. Subtyping according hormone receptor status, HER2-status and proliferation rate enabled provision of the clinico-pathological surrogate of intrinsic subtypes. RESULTS: The homozygous C-allele of MDM2 SNP285 was significantly associated with a younger age-at-diagnosis of 44.2 years, in contrast to G/G- and G/C-patients (62.4, 62.7 yrs., respectively; p = 0.0007; log-Rank-test). In contrast, there was no difference regarding the age-at-diagnosis for patients with the respective genotypes of MDM2 SNP309 (p = 0.799; log-Rank-test). In patients with estrogen receptor (ER)-positive and TP53-mutated tumors, however, the T/T-genotype of the MDM2 SNP309 was significantly associated with an earlier average age-at-diagnosis compared with T/G+G/G-patients (53.5 vs. 68.2 yrs; p = 0.002; log-Rank-test). In the triple-negative subgroup, the G/G-patients had an average age-at-diagnosis of 51 years compared with 63 years for SNP309T carriers (p = 0.004; log-Rank-test) indicating a susceptibility of the G/G genotype for the development of triple negative breast cancer. Patients with the A/A-genotype of MDMX SNP31826 with ER-negative tumors were diagnosed 11 years earlier compared with patients and ER-positive tumors (53.2 vs. 64.4 yrs; p = 0.025, log-Rank-test). Furthermore, in luminal B-like patients (HER2-independent) the C/C-genotype of MDMX SNP34091 was significantly correlated with a decreased event-free survival compared with the A/A-genotype (p < 0.001; log-Rank-test). CONCLUSIONS: We showed that SNPs in the MDM2 and MDMX genes affect at least in part the onset and progression of breast cancer dependent on the ER-status. Our findings provide further evidence for the distinct etiological pathways in ER-negative and ER-positive breast cancers.

6.
J Mol Diagn ; 20(5): 664-676, 2018 09.
Article in English | MEDLINE | ID: mdl-29959022

ABSTRACT

Treatment of colorectal cancer (CRC) with monoclonal antibodies against epidermal growth factor receptor requires the assessment of the mutational status of exons 2, 3, and 4 of the NRAS and KRAS oncogenes. Moreover, the mutational status of exon 15 of the BRAF oncogene is a marker of poor prognosis in CRC. The Idylla NRAS-BRAF Mutation Test is a reliable, simple (<2 minutes hands-on time), and quick (<2 hours turnaround time) sample-to-result solution, enabling the detection of clinically relevant mutations in NRAS (18 mutations) and BRAF (5 mutations). A multicenter study was conducted in 14 centers using the Idylla NRAS-BRAF Mutation Test to assess the NRAS and BRAF mutational status of 418 formalin-fixed, paraffin-embedded tissue samples from CRC patients. Results were compared with those obtained earlier by routine reference methods, including next-generation sequencing, pyrosequencing, mass spectrometry-based assays, PCR-based assays, and Sanger sequencing. In case of discordance, additional tests were performed by digital droplet PCR. Overall, after testing confirmation and excluding invalids/errors by design, concordances between the Idylla NRAS-BRAF Mutation Test and the reference test results were found in almost perfect agreement. In conclusion, the Idylla NRAS-BRAF Mutation Test enables the routine detection of all NRAS and BRAF mutations deemed clinically relevant according to the latest clinical guidelines, without necessitating molecular expertise or infrastructure.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/secondary , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , DNA Mutational Analysis , Humans , Reference Standards , Reproducibility of Results
7.
Breast Cancer Res ; 19(1): 112, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29020998

ABSTRACT

BACKGROUND: Breast cancer tumors are known to be highly heterogeneous and differences in their metabolic phenotypes, especially at protein level, are less well-understood. Profiling of metabolism-related proteins harbors the potential to establish new patient stratification regimes and biomarkers promoting individualized therapy. In our study, we aimed to examine the relationship between metabolism-associated protein expression profiles and clinicopathological characteristics in a large cohort of breast cancer patients. METHODS: Breast cancer specimens from 801 consecutive patients, diagnosed between 2009 and 2011, were investigated using reverse phase protein arrays (RPPA). Patients were treated in accordance with national guidelines in five certified German breast centers. To obtain quantitative expression data, 37 antibodies detecting proteins relevant to cancer metabolism, were applied. Hierarchical cluster analysis and individual target characterization were performed. Clustering results and individual protein expression patterns were associated with clinical data. The Kaplan-Meier method was used to estimate survival functions. Univariate and multivariate Cox regression models were applied to assess the impact of protein expression and other clinicopathological features on survival. RESULTS: We identified three metabolic clusters of breast cancer, which do not reflect the receptor-defined subtypes, but are significantly correlated with overall survival (OS, p ≤ 0.03) and recurrence-free survival (RFS, p ≤ 0.01). Furthermore, univariate and multivariate analysis of individual protein expression profiles demonstrated the central role of serine hydroxymethyltransferase 2 (SHMT2) and amino acid transporter ASCT2 (SLC1A5) as independent prognostic factors in breast cancer patients. High SHMT2 protein expression was significantly correlated with poor OS (hazard ratio (HR) = 1.53, 95% confidence interval (CI) = 1.10-2.12, p ≤ 0.01) and RFS (HR = 1.54, 95% CI = 1.16-2.04, p ≤ 0.01). High protein expression of ASCT2 was significantly correlated with poor RFS (HR = 1.31, 95% CI = 1.01-1.71, p ≤ 0.05). CONCLUSIONS: Our data confirm the heterogeneity of breast tumors at a functional proteomic level and dissects the relationship between metabolism-related proteins, pathological features and patient survival. These observations highlight the importance of SHMT2 and ASCT2 as valuable individual prognostic markers and potential targets for personalized breast cancer therapy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01592825 . Registered on 3 May 2012.


Subject(s)
Amino Acid Transport System ASC/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Glycine Hydroxymethyltransferase/genetics , Minor Histocompatibility Antigens/genetics , Adult , Aged , Amino Acid Transport System ASC/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , Glycine Hydroxymethyltransferase/metabolism , Humans , Kaplan-Meier Estimate , Middle Aged , Minor Histocompatibility Antigens/metabolism , Prognosis , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...