Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters










Publication year range
1.
Curr Biol ; 34(4): 910-915.e2, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38307023

ABSTRACT

Rhythmic locomotor activity, such as flying, swimming, or walking, results from an interplay between higher-order centers in the central nervous system, which initiate, maintain, and modify task-specific motor activity, downstream central pattern-generating neural circuits (CPGs) that can generate a default rhythmic motor output, and, finally, feedback from sense organs that modify basic motor activity toward functionality.1,2,3 In this context, CPGs provide phasic synaptic drive to motor neurons (MNs) and thereby support the generation of rhythmic activity for locomotion. We analyzed the synaptic drive that the leg MNs supplying the three main leg joints receive from CPGs in pharmacologically activated and deafferented preparations of the stick insect (Carausius morosus). We show that premotor CPGs pattern the tonic activity of five of the six leg MN pools by phasic inhibitory synaptic drive. These are the antagonistic MN pools supplying the thoraco-coxal joint and the femur-tibial joint4,5 and the levator MN pool supplying the coxa-trochanteral (CTr) joint. In contrast, rhythmic activity of the depressor MN pool supplying the CTr joint was found to be primarily based on a phasic excitatory drive. This difference is likely related to the pivotal role of the depressor muscle in generating leg stance during any walking situation. Thus, our results provide evidence for qualitatively differing mechanisms to generate rhythmic activity between MN pools in the same locomotor system.


Subject(s)
Insecta , Walking , Animals , Insecta/physiology , Walking/physiology , Locomotion/physiology , Motor Neurons/physiology
2.
J Exp Biol ; 227(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38180228

ABSTRACT

The integration of sensory information is required to maintain body posture and to generate robust yet flexible locomotion through unpredictable environments. To anticipate required adaptations in limb posture and enable compensation of sudden perturbations, an animal's nervous system assembles external (exteroception) and internal (proprioception) cues. Coherent neuronal representations of the proprioceptive context of the body and the appendages arise from the concerted action of multiple sense organs monitoring body kinetics and kinematics. This multimodal proprioceptive information, together with exteroceptive signals and brain-derived descending motor commands, converges onto premotor networks - i.e. the local neuronal circuitry controlling motor output and movements - within the ventral nerve cord (VNC), the insect equivalent of the vertebrate spinal cord. This Review summarizes existing knowledge and recent advances in understanding how local premotor networks in the VNC use convergent information to generate contextually appropriate activity, focusing on the example of posture control. We compare the role and advantages of distributed sensory processing over dedicated neuronal pathways, and the challenges of multimodal integration in distributed networks. We discuss how the gain of distributed networks may be tuned to enable the behavioral repertoire of these systems, and argue that insect premotor networks might compensate for their limited neuronal population size by, in comparison to vertebrate networks, relying more heavily on the specificity of their connections. At a time in which connectomics and physiological recording techniques enable anatomical and functional circuit dissection at an unprecedented resolution, insect motor systems offer unique opportunities to identify the mechanisms underlying multimodal integration for flexible motor control.


Subject(s)
Postural Balance , Proprioception , Animals , Brain , Cues , Locomotion
3.
Curr Opin Neurobiol ; 83: 102766, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865029

ABSTRACT

Technical and methodological advances in recent years have brought new ways to tackle major classical questions in insect motor control. Particularly, significant advancements were achieved in comprehending brain descending control by characterizing descending neurons, their targets in the ventral nerve cord (VNC), and how local networks there integrate sensory information. While physiological experiments in larger insects brought us a better understanding of how sensory modalities are processed locally in the VNC, the development and improvement of genetic tools, principally in Drosophila, opened the door to individually characterize actors at these three levels of information flow in behavioral control. This brief review brings together the names and roles of some of those actors, by highlighting the most significant findings from our perspective.


Subject(s)
Drosophila Proteins , Neurons , Animals , Neurons/physiology , Drosophila/physiology , Drosophila Proteins/genetics , Insecta
4.
PLoS One ; 18(8): e0290359, 2023.
Article in English | MEDLINE | ID: mdl-37651417

ABSTRACT

Stick insects respond to visual or tactile stimuli with whole-body turning or directed reach-to-grasp movements. Such sensory-induced turning and reaching behaviour requires interneurons to convey information from sensory neuropils of the head ganglia to motor neuropils of the thoracic ganglia. To date, descending interneurons are largely unknown in stick insects. In particular, it is unclear whether the special role of the front legs in sensory-induced turning and reaching has a neuroanatomical correlate in terms of descending interneuron numbers. Here, we describe the population of descending interneurons with somata in the brain or gnathal ganglion in the stick insect Carausius morosus, providing a first map of soma cluster counts and locations. By comparison of interneuron populations with projections to the pro- and mesothoracic ganglia, we then estimate the fraction of descending interneurons that terminate in the prothoracic ganglion. With regard to short-latency, touch-mediated reach-to-grasp movements, we also locate likely sites of synaptic interactions between antennal proprioceptive afferents to the deutocerebrum and gnathal ganglion with descending or ascending interneuron fibres. To this end, we combine fluorescent dye stainings of thoracic connectives with stainings of antennal hair field sensilla. Backfills of neck connectives revealed up to 410 descending interneuron somata (brain: 205 in 19 clusters; gnathal ganglion: 205). In comparison, backfills of the prothorax-mesothorax connectives stained only up to 173 somata (brain: 83 in 16 clusters; gnathal ganglion: 90), suggesting that up to 60% of all descending interneurons may terminate in the prothoracic ganglion (estimated upper bound). Double stainings of connectives and antennal hair field sensilla revealed that ascending or descending fibres arborise in close proximity of afferent terminals in the deutocerebrum and in the middle part of the gnathal ganglia. We conclude that two cephalothoracic pathways may convey cues about antennal movement and pointing direction to thoracic motor centres via two synapses only.


Subject(s)
Brain , Interneurons , Humans , Neuropil , Neck , Death , Ganglia
5.
Brain Commun ; 5(1): fcad005, 2023.
Article in English | MEDLINE | ID: mdl-36744011

ABSTRACT

Microtubule stabilization through epothilones is a promising preclinical therapy for functional recovery following spinal cord injury that stimulates axon regeneration, reduces growth-inhibitory molecule deposition and promotes functional improvements. Rehabilitation therapy is the only clinically validated approach to promote functional improvements following spinal cord injury. However, whether microtubule stabilization can augment the beneficial effects of rehabilitation therapy or act in concert with it to further promote repair remains unknown. Here, we investigated the pharmacokinetic, histological and functional efficacies of epothilone D, epothilone B and ixabepilone alone or in combination with rehabilitation following a moderate contusive spinal cord injury. Pharmacokinetic analysis revealed that ixabepilone only weakly crossed the blood-brain barrier and was subsequently excluded from further investigations. In contrast, epothilones B and D rapidly distributed to CNS compartments displaying similar profiles after either subcutaneous or intraperitoneal injections. Following injury and subcutaneous administration of epothilone B or D, rats were subjected to 7 weeks of sequential bipedal and quadrupedal training. For all outcome measures, epothilone B was efficacious compared with epothilone D. Specifically, epothilone B decreased fibrotic scaring which was associated with a retention of fibronectin localized to perivascular cells in sections distal to the lesion. This corresponded to a decreased number of cells present within the intralesional space, resulting in less axons within the lesion. Instead, epothilone B increased serotonergic fibre regeneration and vesicular glutamate transporter 1 expression caudal to the lesion, which was not affected by rehabilitation. Multiparametric behavioural analyses consisting of open-field locomotor scoring, horizontal ladder, catwalk gait analysis and hindlimb kinematics revealed that rehabilitation and epothilone B both improved several aspects of locomotion. Specifically, rehabilitation improved open-field locomotor and ladder scores, as well as improving the gait parameters of limb coupling, limb support, stride length and limb speed; epothilone B improved these same gait parameters but also hindlimb kinematic profiles. Functional improvements by epothilone B and rehabilitation acted complementarily on gait parameters leading to an enhanced recovery in the combination group. As a result, principal component analysis of gait showed the greatest improvement in the epothilone B plus rehabilitation group. Thus, these results support the combination of epothilone B with rehabilitation in a clinical setting.

6.
J Exp Biol ; 225(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36268799

ABSTRACT

Legged locomotion in terrestrial animals is often essential for mating and survival, and locomotor behavior must be robust and adaptable to be successful. This adaptability is largely provided by proprioceptors monitoring positions and movements of body parts and providing feedback to other components of locomotor networks. In insects, proprioceptive chordotonal organs span joints and encode parameters of relative movement between segments. Previous studies have used whole-organ ablation, reduced preparations or broad physiological manipulations to impair the function of the femoral chordotonal organ (fCO), which monitors the femur-tibia joint, and have demonstrated its contribution to interleg coordination and walking behavior. The fCO in Drosophila melanogaster comprises groups of neurons that differ in their morphology and encoding properties (club, hook, claw); sub-population-level manipulations of fCO function have not been methodologically accessible. Here, we took advantage of the genetic toolkit available in D. melanogaster to identify sub-populations of fCO neurons and used transient optogenetic inhibition to investigate their roles in locomotor coordination. Our findings demonstrate that optogenetic inhibition of a subset of club and hook neurons replicates the effects of inhibiting the whole fCO; when inhibited alone, however, the individual subset types did not strongly affect spatial aspects of single-leg kinematics. Moreover, fCO subsets seem to play only a minor role in interleg temporal coordination. Thus, the fCO contains functionally distinct subgroups, and this functional classification may differ from those based on anatomy and encoding properties; this should be investigated in future studies of proprioceptors and their involvement in locomotor networks.


Subject(s)
Drosophila melanogaster , Motor Neurons , Animals , Biomechanical Phenomena , Motor Neurons/physiology , Extremities/physiology , Proprioception/physiology , Locomotion/physiology , Walking
7.
J Neurophysiol ; 128(4): 790-807, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36043841

ABSTRACT

In control of walking, sensory signals of decreasing forces are used to regulate leg lifting in initiation of swing and to detect loss of substrate grip (leg slipping). We used extracellular recordings in two insect species to characterize and model responses to force decrements of tibial campaniform sensilla, receptors that detect forces as cuticular strains. Discharges to decreasing forces did not occur upon direct stimulation of the sites of mechanotransduction (cuticular caps) but were readily elicited by bending forces applied to the leg. Responses to bending force decreases were phasic but had rate sensitivities similar to discharges elicited by force increases in the opposite direction. Application of stimuli of equivalent amplitude at different offset levels showed that discharges were strongly dependent upon the tonic level of loading: firing was maximal to complete unloading of the leg but substantially decreased or eliminated by sustained loads. The contribution of cuticle properties to sensory responses was also evaluated: discharges to force increases showed decreased adaptation when mechanical stress relaxation was minimized; firing to force decreases could be related to viscoelastic "creep" in the cuticle. Discharges to force decrements apparently occur due to cuticle viscoelasticity that generates transient strains similar to bending in the opposite direction. Tuning of sensory responses through cuticular and membrane properties effectively distinguishes loss of substrate grip/complete unloading from force variations due to gait in walking. We have successfully reproduced these properties in a mathematical model of the receptors. Sensors with similar tuning could fulfil these functions in legs of walking machines.NEW & NOTEWORTHY Decreases in loading of legs are important in the regulation of posture and walking in both vertebrates and invertebrates. Recordings of activities of tibial campaniform sensilla, which encode forces in insects, showed that their responses are specifically tuned to detect force decreases at the end of the stance phase of walking or when a leg slips. These results have been reproduced in a mathematical model of the receptors and also have potential applications in robotics.


Subject(s)
Insecta , Mechanotransduction, Cellular , Animals , Gait , Insecta/physiology , Leg , Posture/physiology , Sensilla/physiology , Walking
8.
J Vis Exp ; (184)2022 06 16.
Article in English | MEDLINE | ID: mdl-35781283

ABSTRACT

The Hoffmann reflex (H-reflex), as an electrical analog to the stretch reflex, allows electrophysiological validation of the integrity of neural circuits after injuries such as spinal cord damage or stroke. An increase of the H-reflex response, together with symptoms like non-voluntary muscle contractions, pathologically augmented stretch reflex, and hypertonia in the corresponding muscle, is an indicator of post-stroke spasticity (PSS). In contrast to rather nerve-unspecific transcutaneous measurements, here, we present a protocol to quantify the H-reflex directly at the ulnar and median nerves of the forepaw, which is applicable, with minor modifications, to the tibial and sciatic nerve of the hindpaw. Based on the direct stimulation and the adaptation to different nerves, the method represents a reliable and versatile tool to validate electrophysiological changes in spasticity-related disease models.


Subject(s)
H-Reflex , Reflex, Stretch , Animals , H-Reflex/physiology , Median Nerve , Mice , Muscle Spasticity , Muscles , Reflex, Stretch/physiology
9.
Curr Biol ; 32(17): 3847-3854.e3, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35896118

ABSTRACT

Producing context-appropriate motor acts requires integrating multiple sensory modalities. Presynaptic inhibition of proprioceptive afferent neurons1-4 and afferents of different modalities targeting the same motor neurons (MNs)5-7 underlies some of this integration. However, in most systems, an interneuronal network is interposed between sensory afferents and MNs. How these networks contribute to this integration, particularly at single-neuron resolution, is little understood. Context-specific integration of load and movement sensory inputs occurs in the stick insect locomotory system,6,8-12 and both inputs feed into a network of premotor nonspiking interneurons (NSIs).8 We analyzed how load altered movement signal processing in the stick insect femur-tibia (FTi) joint control system by tracing the interaction of FTi movement13-15 (femoral chordotonal organ [fCO]) and load13,15,16 (tibial campaniform sensilla [CS]) signals through the NSI network to the slow extensor tibiae (SETi) MN, the extensor MN primarily active in non-walking animals.17-19 On the afferent level, load reduced movement signal gain by presynaptic inhibition. In the NSI network, graded responses to movement and load inputs summed nonlinearly, increasing the gain of NSIs opposing movement-induced reflexes and thus decreasing the SETi and extensor tibiae muscle movement reflex responses. Gain modulation was movement-parameter specific and required presynaptic inhibition. These data suggest that gain changes in distributed premotor networks, specifically the relative weighting of antagonistic pathways, could be a general mechanism by which multiple sensory modalities are integrated to generate context-appropriate motor activity.


Subject(s)
Insecta , Proprioception , Animals , Insecta/physiology , Locomotion , Motor Neurons/physiology , Proprioception/physiology , Reflex/physiology
10.
Front Physiol ; 13: 883858, 2022.
Article in English | MEDLINE | ID: mdl-35600292

ABSTRACT

We have just started to understand the mechanisms underlying flexibility of motor programs among segmental neural networks that control each individual leg during walking in vertebrates and invertebrates. Here, we investigated the mechanisms underlying curve walking in the stick insect Carausius morosus during optomotor-induced turning. We wanted to know, whether the previously reported body-side specific changes in a two-front leg turning animal are also observed in the other thoracic leg segments. The motor activity of the three major leg joints showed three types of responses: 1) a context-dependent increase or decrease in motor neuron (MN) activity of the antagonistic MN pools of the thorax-coxa (ThC)-joint during inside and outside turns; 2) an activation of 1 MN pool with simultaneous cessation of the other, independent of the turning direction in the coxa-trochanteral (CTr)-joint; 3) a modification in the activity of both FTi-joint MN pools which depended on the turning direction in one, but not in the other thorax segment. By pharmacological activation of the meso- or metathoracic central pattern generating networks (CPG), we show that turning-related modifications in motor output involve changes to local CPG activity. The rhythmic activity in the MN pools of the ThC and CTr-joints was modified similarly to what was observed under control conditions in saline. Our results indicate that changes in meso- and metathoracic motor activity during curve walking are leg-joint- and thorax-segment-specific, can depend on the turning direction, and are mediated through changes in local CPG activity.

11.
J Neurosci ; 42(24): 4841-4851, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35545434

ABSTRACT

In multisegmented locomotion, coordination of all appendages is crucial for the generation of a proper motor output. In running for example, leg coordination is mainly based on the central interaction of rhythm generating networks, called central pattern generators (CPGs). In slower forms of locomotion, however, sensory feedback, which originates from sensory organs that detect changes in position, velocity and load of the legs' segments, has been shown to play a more crucial role. How exactly sensory feedback influences the activity of the CPGs to establish functional neuronal connectivity is not yet fully understood. Using the female stick insect Carausius morosus, we show for the first time that a long-range caudo-rostral sensory connection exists and highlight that load as sensory signal is sufficient to entrain rhythmic motoneuron (MN) activity in the most rostral segment. So far, mainly rostro-caudal influencing pathways have been investigated where the strength of activation, expressed by the MN activity in the thoracic ganglia, decreases with the distance from the stepping leg to these ganglia. Here, we activated CPGs, producing rhythmic neuronal activity in the thoracic ganglia by using the muscarinic agonist pilocarpine and enforced the stepping of a single, remaining leg. This enabled us to study sensory influences on the CPGs' oscillatory activity. Using this approach, we show that, in contrast to the distance-dependent activation of the protractor-retractor CPGs in different thoracic ganglia, there is no such dependence for the entrainment of the rhythmic activity of active protractor-retractor CPG networks by individual stepping legs.SIGNIFICANCE STATEMENT We show for the first time that sensory information is transferred not only to the immediate adjacent segmental ganglia but also to those farther away, indicating the existence of a long-range caudo-rostral sensory influence. This influence is dependent on stepping direction but independent of whether the leg is actively or passively moved. We suggest that the sensory information comes from unspecific load signals sensed by cuticle mechanoreceptors (campaniform sensilla) of a leg. Our results provide a neuronal basis for the long-established behavioral rules of insect leg coordination. We thus provide a breakthrough in understanding the neuronal networks underlying multilegged locomotion and open new vistas into the neuronal functional connectivity of multisegmented locomotion systems across the animal kingdom.


Subject(s)
Locomotion , Motor Neurons , Action Potentials/physiology , Animals , Female , Insecta/physiology , Locomotion/physiology , Motor Neurons/physiology , Muscarinic Agonists , Pilocarpine
12.
J R Soc Interface ; 19(190): 20220102, 2022 05.
Article in English | MEDLINE | ID: mdl-35506211

ABSTRACT

Insect load sensors, called campaniform sensilla (CS), measure strain changes within the cuticle of appendages. This mechanotransduction provides the neuromuscular system with feedback for posture and locomotion. Owing to their diverse morphology and arrangement, CS can encode different strain directions. We used nano-computed tomography and finite-element analysis to investigate how different CS morphologies within one location-the femoral CS field of the leg in the fruit fly Drosophila-interact under load. By investigating the influence of CS substructures' material properties during simulated limb displacement with naturalistic forces, we could show that CS substructures (i.e. socket and collar) influence strain distribution throughout the whole CS field. Altered socket and collar elastic moduli resulted in 5% relative differences in displacement, and the artificial removal of all sockets caused differences greater than 20% in cap displacement. Apparently, CS sockets support the distribution of distal strain to more proximal CS, while collars alter CS displacement more locally. Harder sockets can increase or decrease CS displacement depending on sensor location. Furthermore, high-resolution imaging revealed that sockets are interconnected in subcuticular rows. In summary, the sensitivity of individual CS is dependent on the configuration of other CS and their substructures.


Subject(s)
Insecta , Mechanotransduction, Cellular , Animals , Biomechanical Phenomena , Biophysics , Insecta/physiology , Sensilla
13.
Curr Biol ; 32(10): 2334-2340.e3, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35476937

ABSTRACT

Because of scaling issues, passive muscle and joint forces become increasingly important as limb size decreases.1-3 In some small limbs, passive forces can drive swing in locomotion,4,5 and antagonist passive torques help control limb swing velocity.6 In stance, minimizing antagonist muscle and joint passive forces could save energy. These considerations predict that, for small limbs, evolution would result in the angle range over which passive forces are too small to cause limb movement (called "resting-state range" in prior insect work4 and "area of neutral equilibrium" in physics and engineering) correlating with the limb's typical working range, usually that in locomotion. We measured the most protracted and retracted thorax-femur (ThF) angles of the pro- (front), meso- (middle), and metathoracic (hind) leg during stick insect (Carausius morosus) walks. This ThF working range differed in the three leg types, being more posterior in more posterior legs. In other experiments, we manually protracted or retracted the denervated front, middle, and hind legs. Upon release, passive forces moved the leg in the opposite direction (retraction or protraction) until it reached the most protracted or most retracted edge of the ThF resting-state range. The ThF resting-state angle ranges correlated with the leg-type working range, being more posterior in more posterior legs. The most protracted ThF walking angles were more retracted than the post-protraction ThF angles, and the most retracted ThF walking angles were similar to the post-retraction ThF angles. These correlations of ThF working- and resting-state ranges could simplify motor control and save energy. These data also provide an example of evolution altering behavior by changing passive muscle and joint properties.7.


Subject(s)
Extremities , Walking , Animals , Biomechanical Phenomena , Extremities/physiology , Insecta/physiology , Locomotion/physiology , Lower Extremity/physiology , Torque
14.
Front Insect Sci ; 2: 818449, 2022.
Article in English | MEDLINE | ID: mdl-38468811

ABSTRACT

The walking system of the stick insect is one of the most thoroughly described invertebrate systems. We know a lot about the role of sensory input in the control of stepping of a single leg. However, the neuronal organization and connectivity of the central neural networks underlying the rhythmic activation and coordination of leg muscles still remain elusive. It is assumed that these networks can couple in the absence of phasic sensory input due to the observation of spontaneous recurrent patterns (SRPs) of coordinated motor activity equivalent to fictive stepping-phase transitions. Here we sought to quantify the phase of motor activity within SRPs in the isolated and interconnected meso- and meta-thoracic ganglia. We show that SRPs occur not only in the meso-, but also in the metathoracic ganglia of the stick insect, discovering a qualitative difference between them. We construct a network based on neurophysiological data capable of reproducing the measured SRP phases to investigate this difference. By comparing network output to the biological measurements we confirm the plausibility of the architecture and provide a hypothesis to account for these qualitative differences. The neural architecture we present couples individual central pattern generators to reproduce the fictive stepping-phase transitions observed in deafferented stick insect preparations after pharmacological activation, providing insights into the neural architecture underlying coordinated locomotion.

15.
J Neurophysiol ; 126(6): 1875-1890, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34705575

ABSTRACT

Nervous systems face a torrent of sensory inputs, including proprioceptive feedback. Signal integration depends on spatially and temporally coinciding signals. It is unclear how relative time delays affect multimodal signal integration from spatially distant sense organs. We measured transmission times and latencies along all processing stages of sensorimotor pathways in the stick insect leg muscle control system, using intra- and extracellular recordings. Transmission times of signals from load-sensing tibial and trochanterofemoral campaniform sensilla (tiCS, tr/fCS) to the premotor network were longer than from the movement-sensing femoral chordotonal organ (fCO). We characterized connectivity patterns from tiCS, tr/fCS, and fCO afferents to identified premotor nonspiking interneurons (NSIs) and motor neurons (MNs) by distinguishing short- and long-latency responses to sensory stimuli. Functional NSI connectivity depended on sensory context. The timeline of multisensory integration in the NSI network showed an early phase of movement signal processing and a delayed phase of load signal integration. The temporal delay of load signals relative to movement feedback persisted into MN activity and muscle force development. We demonstrate differential delays in the processing of two distinct sensory modalities generated by the sensorimotor network and affecting motor output. The reported temporal differences in sensory processing and signal integration improve our understanding of sensory network computation and function in motor control.NEW & NOTEWORTHY Networks integrating multisensory input face the challenge of not only spatial but also temporal integration. In the local network controlling insect leg movements, proprioceptive signal delays differ between sensory modalities. Specifically, signal transmission times to and neuronal connectivity within the sensorimotor network lead to delayed information about leg loading relative to movement signals. Temporal delays persist up to the level of the motor output, demonstrating its relevance for motor control.


Subject(s)
Ganglia, Invertebrate/physiology , Interneurons/physiology , Lower Extremity/physiology , Motor Activity/physiology , Motor Neurons/physiology , Nerve Net/physiology , Proprioception/physiology , Animals , Behavior, Animal/physiology , Electrophysiological Phenomena/physiology , Female , Insecta
16.
J Neurosci Methods ; 363: 109322, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34391793

ABSTRACT

BACKGROUND: The specific role of sensory organs in locomotor pattern generation is traditionally investigated by means of mechanical ablation in arthropods that currently do not allow genetic manipulation. Mechanical ablation is irreversible, and may lead to injury discharges and changes in the structural integrity of the cuticle. NEW METHOD: Here, we present a new method to temporarily or permanently deprive parts of an insect nervous system of sensory feedback from leg proprioceptors by means of blue light application. We illuminated campaniform sensilla (CS) with a blue LED (420-480 nm) or a 473 nm laser at different light intensities to optically eliminate sensory and motor neuron responses to mechanical stimulation. RESULTS: We were able to eliminate all stimulus-evoked responses of CS. Individual CS groups were precisely and selectively inactivated without affecting nearby proprioceptors, using an optical fiber (Ø 200 µm) to guide the light. Our results demonstrated that lower light intensities significantly increase the required exposure time, but also the chance for recovery, thus making the effect reversible. COMPARISON WITH EXISTING METHODS: In contrast to mechanical ablation, optical inactivation of individual sensory organs is non-invasive and does not affect the behavioral state of the animal, nor does it induce escape behavior. This is especially relevant in non-model system experimental animals where optogenetic manipulation cannot be used, due to a lack of established methods of access. CONCLUSION: Our results show that the proposed method is a reliable alternative to mechanical ablation and can be successfully applied to the CS, as it fulfills all requirements regarding selectivity, efficiency, and reproducibility.


Subject(s)
Insecta , Sensory Receptor Cells , Animals , Motor Neurons , Reproducibility of Results , Sensilla
17.
J Neurophysiol ; 126(1): 227-248, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34107221

ABSTRACT

Control of adaptive walking requires the integration of sensory signals of muscle force and load. We have studied how mechanoreceptors (tibial campaniform sensilla) encode "naturalistic" stimuli derived from joint torques of stick insects walking on a horizontal substrate. Previous studies showed that forces applied to the legs using the mean torque profiles of a proximal joint were highly effective in eliciting motor activities. However, substantial variations in torque direction and magnitude occurred at the more distal femorotibial joint, which can generate braking or propulsive forces and provide lateral stability. To determine how these forces are encoded, we used torque waveforms of individual steps that had maximum values in stance in the directions of flexion or extension. Analysis of kinematic data showed that the torques in different directions tended to occur in different ranges of joint angles. Variations within stance were not accompanied by comparable changes in joint angle but often reflected vertical ground reaction forces and leg support of body load. Application of torque waveforms elicited sensory discharges with variations in firing frequency similar to those seen in freely walking insects. All sensilla directionally encoded the dynamics of force increases and showed hysteresis to transient force decreases. Smaller receptors exhibited more tonic firing. Our findings suggest that dynamic sensitivity in force feedback can modulate ongoing muscle activities to stabilize distal joints when large forces are generated at proximal joints. Furthermore, use of "naturalistic" stimuli can reproduce characteristics seen in freely moving animals that are absent in conventional restrained preparations.NEW & NOTEWORTHY Sensory encoding of forces during walking by campaniform sensilla was characterized in stick insects using waveforms of joint torques calculated by inverse dynamics as mechanical stimuli. Tests using the mean joint torque and torques of individual steps showed the system is highly sensitive to force dynamics (dF/dt). Use of "naturalistic" stimuli can reproduce characteristics of sensory discharges seen in freely walking insects, such as load transfer among legs.


Subject(s)
Feedback, Physiological/physiology , Sensilla/physiology , Torque , Walking/physiology , Weight-Bearing/physiology , Animals , Extremities/physiology , Female , Insecta , Mechanoreceptors/physiology
18.
Curr Biol ; 31(9): R444-R445, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33974872

ABSTRACT

New research has shown that mechanosensitive neurons in the lateral spinal cord of the adult zebrafish sense lateral bending and inhibit both their rostrally-located counterparts and the central-rhythm-generating networks across the midline. The interplay of central and peripheral neural mechanisms has never been seen to be so tight.


Subject(s)
Proprioception , Zebrafish , Animals , Neurons , Spinal Cord , Zebrafish Proteins
19.
Curr Biol ; 31(8): R394-R396, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33905699

ABSTRACT

Effective motor control requires the real-time transmission of information between sensory organs and the motor system. With the powerful techniques that are now available, Drosophila neuroscientists are unravelling the topology of the neural circuits that carry this information in the fly at synaptic resolution.


Subject(s)
Drosophila melanogaster , Neurosciences , Psychomotor Performance , Animals , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Neural Pathways , Synapses
20.
J Neurophysiol ; 125(5): 1800-1813, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33788591

ABSTRACT

In legged animals, integration of information from various proprioceptors in and on the appendages by local premotor networks in the central nervous system is crucial for controlling motor output. To ensure posture maintenance and precise active movements, information about limb loading and movement is required. In insects, various groups of campaniform sensilla (CS) measure forces and loads acting in different directions on the leg, and the femoral chordotonal organ (fCO) provides information about movement of the femur-tibia (FTi) joint. In this study, we used extra- and intracellular recordings of extensor tibiae (ExtTi) and retractor coxae (RetCx) motor neurons (MNs) and identified local premotor nonspiking interneurons (NSIs) and mechanical stimulation of the fCO and tibial or trochanterofemoral CS (tiCS, tr/fCS), to investigate the premotor network architecture underlying multimodal proprioceptive integration. We found that load feedback from tiCS altered the strength of movement-elicited resistance reflexes and determined the specificity of ExtTi and RetCx MN responses to various load and movement stimuli. These responses were mediated by a common population of identified NSIs into which synaptic inputs from the fCO, tiCS, and tr/fCS are distributed, and whose effects onto ExtTi MNs can be antagonistic for both stimulus modalities. Multimodal sensory signal interaction was found at the level of single NSIs and MNs. The results provide evidence that load and movement feedback are integrated in a multimodal, distributed local premotor network consisting of antagonistic elements controlling movements of the FTi joint, thus substantially extending current knowledge on how legged motor systems achieve fine-tuned motor control.NEW & NOTEWORTHY Proprioception is crucial for motor control in legged animals. We show the extent to which processing of movement (fCO) and load (CS) signals overlaps in the local premotor network of an insect leg. Multimodal signals converge onto the same set of interneurons, and our knowledge about distributed, antagonistic processing is extended to incorporate multiple modalities within one perceptual neuronal framework.


Subject(s)
Extremities/physiology , Feedback, Sensory/physiology , Insecta/physiology , Motor Activity/physiology , Motor Neurons/physiology , Nerve Net/physiology , Proprioception/physiology , Animals , Behavior, Animal/physiology , Electrophysiological Phenomena/physiology , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...