Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Schizophr Bull ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37756493

ABSTRACT

BACKGROUND AND HYPOTHESES: Impaired executive control is a potential prognostic and endophenotypic marker of schizophrenia (SZ) and bipolar disorder (BP). Assessing children with familial high-risk (FHR) of SZ or BP enables characterization of early risk markers and we hypothesize that they express impaired executive control as well as aberrant brain activation compared to population-based control (PBC) children. STUDY DESIGN: Using a flanker task, we examined executive control together with functional magnetic resonance imaging (fMRI) in 11- to 12-year-old children with FHR of SZ (FHR-SZ) or FHR of BP (FHR-BP) and PBC children as part of a register-based, prospective cohort-study; The Danish High Risk and Resilience study-VIA 11. STUDY RESULTS: We included 85 (44% female) FHR-SZ, 63 (52% female) FHR-BP and 98 (50% female) PBC in the analyses. Executive control effects, caused by the spatial visuomotor conflict, showed no differences between groups. Bayesian ANOVA of reaction time (RT) variability, quantified by the coefficient of variation (CVRT), revealed a group effect with similarly higher CVRT in FHR-BP and FHR-SZ compared to PBC (BF10 = 6.82). The fMRI analyses revealed no evidence for between-group differences in task-related brain activation. Post hoc analyses excluding children with psychiatric illness yielded same results. CONCLUSION: FHR-SZ and FHR-BP at age 11-12 show intact ability to resolve a spatial visuomotor conflict and neural efficacy. The increased variability in RT may reflect difficulties in maintaining sustained attention. Since variability in RT was independent of existing psychiatric illness, it may reflect a potential endophenotypic marker of risk.

2.
Front Psychiatry ; 13: 809807, 2022.
Article in English | MEDLINE | ID: mdl-35444571

ABSTRACT

Background: Children born to parents with severe mental illness have gained more attention during the last decades because of increasing evidence documenting that these children constitute a population with an increased risk of developing mental illness and other negative life outcomes. Because of high-quality research with cohorts of offspring with familial risk and increased knowledge about gene-environment interactions, early interventions and preventive strategies are now being developed all over the world. Adolescence is a period characterized by massive changes, both in terms of physical, neurologic, psychological, social, and behavioral aspects. It is also the period of life with the highest risk of experiencing onset of a mental disorder. Therefore, investigating the impact of various risk and resilience factors in adolescence is important. Methods: The Danish High-Risk and Resilience Study started data collection in 2012, where 522 7-year-old children were enrolled in the first wave of the study, the VIA 7 study. The cohort was identified through Danish registers based on diagnoses of the parents. A total of 202 children had a parent diagnosed with schizophrenia, 120 children had a parent diagnosed with bipolar disorder, and 200 children had parents without these diagnoses. At age 11 years, all children were assessed for the second time in the VIA 11 study, with a follow-up retention rate of 89%. A comprehensive assessment battery covering domains of psychopathology, neurocognition, social cognition and behavior, motor development and physical health, genetic analyses, attachment, stress, parental functioning, and home environment was carried out at each wave. Magnetic resonance imaging scans of the brain and electroencephalograms were included from age 11 years. This study protocol describes the third wave of assessment, the VIA 15 study, participants being 15 years of age and the full, 3-day-long assessment battery this time including also risk behavior, magnetoencephalography, sleep, and a white noise paradigm. Data collection started on May 1, 2021. Discussion: We will discuss the importance of longitudinal studies and cross-sectional data collection and how studies like this may inform us about unmet needs and windows of opportunity for future preventive interventions, early illness identification, and treatment in the future.

3.
BMJ Open ; 12(4): e057999, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35437254

ABSTRACT

OBJECTIVES: To investigate public perspectives on brain health. DESIGN: Cross-sectional multilanguage online survey. SETTING: Lifebrain posted the survey on its website and social media and shared it with stakeholders. The survey was open from 4 June 2019 to 31 August 2020. PARTICIPANTS: n=27 590 aged ≥18 years from 81 countries in five continents completed the survey. The respondents were predominantly women (71%), middle aged (41-60 years; 37%) or above (>60 years; 46%), highly educated (69%) and resided in Europe (98%). MAIN OUTCOME MEASURES: Respondents' views were assessed regarding factors that may influence brain health, life periods considered important to look after the brain and diseases and disorders associated with the brain. We run exploratory linear models at a 99% level of significance to assess correlates of the outcome variables, adjusting for likely confounders in a targeted fashion. RESULTS: Of all significant effects, the respondents recognised the impact of lifestyle factors on brain health but had relatively less awareness of the role socioeconomic factors might play. Most respondents rated all life periods as important for the brain (95%-96%), although the prenatal period was ranked significantly lower (84%). Equally, women and highly educated respondents more often rated factors and life periods to be important for brain health. Ninety-nine per cent of respondents associated Alzheimer's disease and dementia with the brain. The respondents made a connection between mental health and the brain, and mental disorders such as schizophrenia and depression were significantly more often considered to be associated with the brain than neurological disorders such as stroke and Parkinson's disease. Few respondents (<32%) associated cancer, hypertension, diabetes and arthritis with the brain. CONCLUSIONS: Differences in perceptions of brain health were noted among specific segments of the population. Policies providing information about brain-friendly health behaviours and targeting people less likely to have relevant experience may be needed.


Subject(s)
Brain , Public Opinion , Adolescent , Adult , Cross-Sectional Studies , Female , Humans , Life Style , Male , Middle Aged , Surveys and Questionnaires
4.
Front Psychiatry ; 11: 632, 2020.
Article in English | MEDLINE | ID: mdl-32754058

ABSTRACT

Children, adolescents, and young adults with at least one first-degree relative [familial high-risk (FHR)] with either schizophrenia (SZ) or bipolar disorder (BD) have a one-in-two risk of developing a psychiatric disorder. Here, we review functional magnetic resonance imaging (fMRI) studies which examined task-related brain activity in young individuals with FHR-SZ and FHR-BD. A systematic search identified all published task-related fMRI studies in children, adolescents, and young adults below an age of 27 years with a first-degree relative with SZ or BD, but without manifest psychotic or affective spectrum disorder themselves. The search identified 19 cross-sectional fMRI studies covering four main cognitive domains: 1) working memory (n = 3), 2) cognitive control (n = 4), 3) reward processing (n = 3), and 4) emotion processing (n = 9). Thirteen studies included FHR-BD, five studies included FHR-SZ, and one study included a pooled FHR group. In general, task performance did not differ between the respective FHR groups and healthy controls, but 18 out of the 19 fMRI studies revealed regional alterations in task-related activation. Brain regions showing group differences in peak activation were regions associated with the respective task domain and showed little overlap between FHR-SZ and FHR-BD. The low number of studies, together with the low number of subjects, and the substantial heterogeneity of employed methodological approaches within the domain of working memory, cognitive control, and reward processing impedes finite conclusions. Emotion processing was the most investigated task domain in FHR-BD. Four studies reported differences in activation of the amygdala, and two studies reported differences in activation of inferior frontal/middle gyrus. Together, these studies provide evidence for altered brain processing of emotions in children, adolescents, and young adults at FHR-BD. More studies of higher homogeneity, larger sample sizes and with a longitudinal study design are warranted to prove a shared or specific FHR-related endophenotypic brain activation in young first-degree relatives of individuals with SZ or BD, as well as to pinpoint specific alterations in brain activation during cognitive-, emotional-, and reward-related tasks.

5.
Neuroimage Clin ; 22: 101721, 2019.
Article in English | MEDLINE | ID: mdl-30785050

ABSTRACT

One of the most common copy number variants, the 22q11.2 microdeletion, confers an increased risk for schizophrenia. Since schizophrenia has been associated with an aberrant neural response to repeated stimuli through both reduced adaptation and prediction, we here hypothesized that this may also be the case in nonpsychotic individuals with a 22q11.2 deletion. We recorded high-density EEG from 19 individuals with 22q11.2 deletion syndrome (12-25 years), as well as 27 healthy volunteers with comparable age and sex distribution, while they listened to a sequence of sounds arranged in a roving oddball paradigm. Using posterior probability maps and dynamic causal modelling we tested three different models accounting for repetition dependent changes in cortical responses as well as in effective connectivity; namely an adaptation model, a prediction model, and a model including both adaptation and prediction. Repetition-dependent changes were parametrically modulated by a combination of adaptation and prediction and were apparent in both cortical responses and in the underlying effective connectivity. This effect was reduced in individuals with a 22q11.2 deletion and was negatively correlated with negative symptom severity. Follow-up analysis showed that the reduced effect of the combined adaptation and prediction model seen in individuals with 22q11.2 deletion was driven by reduced adaptation rather than prediction failure. Our findings suggest that adaptation is reduced in individuals with a 22q11.2 deletion, which can be interpreted in light of the framework of predictive coding as a failure to suppress prediction errors.


Subject(s)
22q11 Deletion Syndrome/physiopathology , Adaptation, Physiological/physiology , Auditory Perception/physiology , Brain/physiopathology , Acoustic Stimulation , Adolescent , Adult , Bayes Theorem , Child , Electroencephalography , Female , Humans , Male , Young Adult
6.
Schizophr Res ; 197: 328-336, 2018 07.
Article in English | MEDLINE | ID: mdl-29395612

ABSTRACT

22q11.2 deletion syndrome (22q11.2DS) is one of the most common copy number variants and confers a markedly increased risk for schizophrenia. As such, 22q11.2DS is a homogeneous genetic liability model which enables studies to delineate functional abnormalities that may precede disease onset. Mismatch negativity (MMN), a brain marker of change detection, is reduced in people with schizophrenia compared to healthy controls. Using dynamic causal modelling (DCM), previous studies showed that top-down effective connectivity linking the frontal and temporal cortex is reduced in schizophrenia relative to healthy controls in MMN tasks. In the search for early risk-markers for schizophrenia we investigated the neural basis of change detection in a group with 22q11.2DS. We recorded high-density EEG from 19 young non-psychotic 22q11.2 deletion carriers, as well as from 27 healthy non-carriers with comparable age distribution and sex ratio, while they listened to a sequence of sounds arranged in a roving oddball paradigm. Despite finding no significant reduction in the MMN responses, whole-scalp spatiotemporal analysis of responses to the tones revealed a greater fronto-temporal N1 component in the 22q11.2 deletion carriers. DCM showed reduced intrinsic connection within right primary auditory cortex as well as in the top-down, connection from the right inferior frontal gyrus to right superior temporal gyrus for 22q11.2 deletion carriers although not surviving correction for multiple comparison. We discuss these findings in terms of reduced adaptation and a general increased sensitivity to tones in 22q11.2DS.


Subject(s)
Auditory Perception/physiology , DiGeorge Syndrome/physiopathology , Evoked Potentials, Auditory/physiology , Prefrontal Cortex/physiopathology , Temporal Lobe/physiopathology , Adolescent , Adult , Auditory Cortex/physiopathology , Child , Electroencephalography , Female , Heterozygote , Humans , Male , Models, Theoretical , Spatio-Temporal Analysis , Young Adult
7.
Schizophr Bull ; 44(2): 388-397, 2018 02 15.
Article in English | MEDLINE | ID: mdl-28521049

ABSTRACT

Background: The 22q11.2 deletion syndrome confers a markedly increased risk for schizophrenia. 22q11.2 deletion carriers without manifest psychotic disorder offer the possibility to identify functional abnormalities that precede clinical onset. Since schizophrenia is associated with a reduced cortical gamma response to auditory stimulation at 40 Hz, we hypothesized that the 40 Hz auditory steady-state response (ASSR) may be attenuated in nonpsychotic individuals with a 22q11.2 deletion. Methods: Eighteen young nonpsychotic 22q11.2 deletion carriers and a control group of 27 noncarriers with comparable age range (12-25 years) and sex ratio underwent 128-channel EEG. We recorded the cortical ASSR to a 40 Hz train of clicks, given either at a regular inter-stimulus interval of 25 ms or at irregular intervals jittered between 11 and 37 ms. Results: Healthy noncarriers expressed a stable ASSR to regular but not in the irregular 40 Hz click stimulation. Both gamma power and inter-trial phase coherence of the ASSR were markedly reduced in the 22q11.2 deletion group. The ability to phase lock cortical gamma activity to regular auditory 40 Hz stimulation correlated with the individual expression of negative symptoms in deletion carriers (ρ = -0.487, P = .041). Conclusions: Nonpsychotic 22q11.2 deletion carriers lack efficient phase locking of evoked gamma activity to regular 40 Hz auditory stimulation. This abnormality indicates a dysfunction of fast intracortical oscillatory processing in the gamma-band. Since ASSR was attenuated in nonpsychotic deletion carriers, ASSR deficiency may constitute a premorbid risk marker of schizophrenia.


Subject(s)
Auditory Cortex/physiopathology , Auditory Perception/physiology , DiGeorge Syndrome/physiopathology , Electroencephalography/methods , Evoked Potentials, Auditory/physiology , Gamma Rhythm/physiology , Adolescent , Child , Female , Humans , Male , Young Adult
8.
BMC Psychiatry ; 15: 220, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26384214

ABSTRACT

BACKGROUND: Neurodevelopmental brain disorders such as schizophrenia, autism and attention deficit hyperactivity disorder are complex disorders with heterogeneous etiologies. Schizophrenia and autism are difficult to treat and often cause major individual suffering largely owing to our limited understanding of the disease biology. Thus our understanding of the biological pathogenesis needs to be substantiated to enable development of more targeted treatment options with improved efficacy. Insights into the pre-morbid disease dynamics, the morbid condition and the underlying biological disease mechanisms may come from studies of subjects with homogenous etiologies. Breakthroughs in psychiatric genetics have shown that several genetic anomalies predispose for neurodevelopmental brain disorders. We have established a Danish research initiative to study the common microdeletion at chromosome 22q11.2, which is one of the genetic anomalies that confer high risk of schizophrenia, autism and attention deficit hyperactivity disorder. METHODS/DESIGN: The study applies a "cause-to-outcome" strategy to identify pre-morbid pathogenesis and underlying biological disease mechanisms of psychosis and secondarily the morbid condition of autism and attention deficit hyperactivity disorder. We use a population based epidemiological design to inform on disease prevalence, environmental risk factors and familial disposition for mental health disorders and a case control study design to map the functional effects across behavioral and neurophysiological traits of the 22q11 deletion in a recruited sample of Danish individuals. DISCUSSION: Identification of predictive pre-morbid clinical, cognitive, functional and structural brain alterations in 22q11 deletion carriers may alter current clinical practice from symptomatic therapy of manifest mental illness into early intervention strategies, which may also be applicable to at risk subjects without known etiology. Hopefully new insights into the biological disease mechanisms, which are mandatory for novel drug developments, can improve the outcome of the pharmacological interventions in psychiatry.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Autistic Disorder/genetics , Schizophrenia/genetics , Case-Control Studies , Child , Child Health Services , Chromosome Aberrations , Chromosomes, Human, Pair 22 , Denmark , Humans , Mental Health Services , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...