Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacology ; 48(10): 1446-1454, 2023 09.
Article in English | MEDLINE | ID: mdl-37055488

ABSTRACT

Drugs that stimulate the trace amine-associated receptor 1 (TAAR1) are under clinical investigation as treatments for several neuropsychiatric disorders. Previous studies in a genetic mouse model of voluntary methamphetamine intake identified TAAR1, expressed by the Taar1 gene, as a critical mediator of aversive methamphetamine effects. Methamphetamine is a TAAR1 agonist, but also has actions at monoamine transporters. Whether exclusive activation of TAAR1 has aversive effects was not known at the time we conducted our studies. Mice were tested for aversive effects of the selective TAAR1 agonist, RO5256390, using taste and place conditioning procedures. Hypothermic and locomotor effects were also examined, based on prior evidence of TAAR1 mediation. Male and female mice of several genetic models were used, including lines selectively bred for high and low methamphetamine drinking, a knock-in line in which a mutant form of Taar1 that codes for a non-functional TAAR1 was replaced by the reference Taar1 allele that codes for functional TAAR1, and their matched control line. RO5256390 had robust aversive, hypothermic and locomotor suppressing effects that were found only in mice with functional TAAR1. Knock-in of the reference Taar1 allele rescued these phenotypes in a genetic model that normally lacks TAAR1 function. Our study provides important data on TAAR1 function in aversive, locomotor, and thermoregulatory effects that are important to consider when developing TAAR1 agonists as therapeutic drugs. Because other drugs can have similar consequences, potential additive effects should be carefully considered as these treatment agents are being developed.


Subject(s)
Methamphetamine , Mice , Male , Female , Animals , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/agonists
2.
Front Psychiatry ; 12: 725839, 2021.
Article in English | MEDLINE | ID: mdl-34512422

ABSTRACT

Sensitivity to rewarding and reinforcing drug effects has a critical role in initial use, but the role of initial aversive drug effects has received less attention. Methamphetamine effects on dopamine re-uptake and efflux are associated with its addiction potential. However, methamphetamine also serves as a substrate for the trace amine-associated receptor 1 (TAAR1). Growing evidence in animal models indicates that increasing TAAR1 function reduces drug self-administration and intake. We previously determined that a non-synonymous single nucleotide polymorphism (SNP) in Taar1 predicts a conformational change in the receptor that has functional consequences. A Taar1 m1J mutant allele existing in DBA/2J mice expresses a non-functional receptor. In comparison to mice that possess one or more copies of the reference Taar1 allele (Taar1 +/+ or Taar1 +/m1J ), mice with the Taar1 m1J/m1J genotype readily consume methamphetamine, express low sensitivity to aversive effects of methamphetamine, and lack sensitivity to acute methamphetamine-induced hypothermia. We used three sets of knock-in and control mice in which one Taar1 allele was exchanged with the alternative allele to determine if other methamphetamine-related traits and an opioid trait are impacted by the same Taar1 SNP proven to affect MA consumption and hypothermia. First, we measured sensitivity to conditioned rewarding and aversive effects of methamphetamine to determine if an impact of the Taar1 SNP on these traits could be proven. Next, we used multiple genetic backgrounds to study the consistency of Taar1 allelic effects on methamphetamine intake and hypothermia. Finally, we studied morphine-induced hypothermia to confirm prior data suggesting that a gene in linkage disequilibrium with Taar1, rather than Taar1, accounts for prior observed differences in sensitivity. We found that a single SNP exchange reduced sensitivity to methamphetamine conditioned reward and increased sensitivity to conditioned aversion. Profound differences in methamphetamine intake and hypothermia consistently corresponded with genotype at the SNP location, with only slight variation in magnitude across genetic backgrounds. Morphine-induced hypothermia was not dependent on Taar1 genotype. Thus, Taar1 genotype and TAAR1 function impact multiple methamphetamine-related effects that likely predict the potential for methamphetamine use. These data support further investigation of their potential roles in risk for methamphetamine addiction and therapeutic development.

3.
Genes Brain Behav ; 20(2): e12667, 2021 02.
Article in English | MEDLINE | ID: mdl-32424970

ABSTRACT

Trace amine-associated receptor 1 (Taar1) impacts methamphetamine (MA) intake. A mutant allele (Taar1m1J ) derived from the DBA/2J mouse strain codes for a non-functional receptor, and Taar1m1J/m1J mice consume more MA than mice possessing the reference Taar1+ allele. To study the impact of this mutation in a genetically diverse population, heterogeneous stock-collaborative cross (HS-CC) mice, the product of an eight-way cross of standard and wild-derived strains, were tested for MA intake. HS-CC had low MA intake, so an HS-CC by DBA/2J strain F2 intercross was created to transfer the mutant allele onto the diverse background, and used for selective breeding. To study residual variation in MA intake existing in Taar1m1J/m1J mice, selective breeding for higher (MAH) vs lower (MAL) MA intake was initiated from Taar1m1J/m1J F2 individuals; a control line of Taar1+/+ individuals (MAC) was retained. The lines were also examined for MA-induced locomotor and thermal responses, and fluid and tastant consumption. Taar1m1J/m1J F2 mice consumed significantly more MA than Taar1+/+ F2 mice. Response to selection was significant by generation 2 and there were corresponding differences in fluid consumed. Fluid consumption was not different in non-MA drinking studies. Taar1m1J/m1J genotype (MAL or MAH vs MAC mice) was associated with heighted MA locomotor and reduced hypothermic responses. MAL mice exhibited greater sensitization than MAH mice, but the selected lines did not consistently differ for thermal or tastant phenotypes. Residual variation among high-risk Taar1m1J/m1J mice appears to involve mechanisms associated with neuroadaptation to MA, but not sensitivity to hypothermic effects of MA.


Subject(s)
Amphetamine-Related Disorders/genetics , Genes, Modifier , Receptors, G-Protein-Coupled/genetics , Selective Breeding , Amphetamine-Related Disorders/physiopathology , Animals , Body Temperature , Feeding Behavior , Female , Hybridization, Genetic , Locomotion , Male , Methamphetamine/administration & dosage , Methamphetamine/toxicity , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Phenotype
4.
Elife ; 82019 07 09.
Article in English | MEDLINE | ID: mdl-31274109

ABSTRACT

We identified a locus on mouse chromosome 10 that accounts for 60% of the genetic variance in methamphetamine intake in mice selectively bred for high versus low methamphetamine consumption. We nominated the trace amine-associated receptor 1 gene, Taar1, as the strongest candidate and identified regulation of the mu-opioid receptor 1 gene, Oprm1, as another contributor. This study exploited CRISPR-Cas9 to test the causal role of Taar1 in methamphetamine intake and a genetically-associated thermal response to methamphetamine. The methamphetamine-related traits were rescued, converting them to levels found in methamphetamine-avoiding animals. We used a family of recombinant inbred mouse strains for interval mapping and to examine independent and epistatic effects of Taar1 and Oprm1. Both methamphetamine intake and the thermal response mapped to Taar1 and the independent effect of Taar1 was dependent on genotype at Oprm1. Our findings encourage investigation of the contribution of Taar1 and Oprm1 variants to human methamphetamine addiction.


Subject(s)
Genetic Variation , Methamphetamine/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Opioid, mu/metabolism , Animals , Base Sequence , Body Temperature , Chromosomes, Mammalian/genetics , Female , Genotype , Hypothermia/genetics , Male , Mice , Quantitative Trait Loci/genetics , Receptors, G-Protein-Coupled/metabolism
5.
Brain Sci ; 9(7)2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31262025

ABSTRACT

Transcriptome profiling can broadly characterize drug effects and risk for addiction in the absence of drug exposure. Modern large-scale molecular methods, including RNA-sequencing (RNA-Seq), have been extensively applied to alcohol-related disease traits, but rarely to risk for methamphetamine (MA) addiction. We used RNA-Seq data from selectively bred mice with high or low risk for voluntary MA intake to construct coexpression and cosplicing networks for differential risk. Three brain reward circuitry regions were explored, the nucleus accumbens (NAc), prefrontal cortex (PFC), and ventral midbrain (VMB). With respect to differential gene expression and wiring, the VMB was more strongly affected than either the PFC or NAc. Coexpression network connectivity was higher in the low MA drinking line than in the high MA drinking line in the VMB, oppositely affected in the NAc, and little impacted in the PFC. Gene modules protected from the effects of selection may help to eliminate certain mechanisms from significant involvement in risk for MA intake. One such module was enriched in genes with dopamine-associated annotations. Overall, the data suggest that mitochondrial function and glutamate-mediated synaptic plasticity have key roles in the outcomes of selective breeding for high versus low levels of MA intake.

6.
Front Pharmacol ; 8: 993, 2017.
Article in English | MEDLINE | ID: mdl-29403379

ABSTRACT

Major gene effects on traits associated with substance use disorders are rare. Previous findings in methamphetamine drinking (MADR) lines of mice, bred for high or low voluntary MA intake, and in null mutants demonstrate a major impact of the trace amine-associated receptor 1 (Taar1) gene on a triad of MA-related traits: MA consumption, MA-induced conditioned taste aversion and MA-induced hypothermia. While inbred strains are fundamentally genetically stable, rare spontaneous mutations can become fixed and result in new or aberrant phenotypes. A single nucleotide polymorphism in Taar1 that encodes a missense proline to threonine mutation in the second transmembrane domain (Taar1m1J ) has been identified in the DBA/2J strain. MA is an agonist at this receptor, but the receptor produced by Taar1m1J does not respond to MA or endogenous ligands. In the present study, we used progeny of the C57BL/6J × DBA/2J F2 cross, the MADR lines, C57BL/6J × DBA/2J recombinant inbred strains, and DBA/2 mice sourced from four vendors to further examine Taar1-MA phenotype relations and to define the chronology of the fixation of the Taar1m1J mutation. Mice homozygous for Taar1m1J were found at high frequency early in selection for high MA intake in multiple replicates of the high MADR line, whereas Taar1m1J homozygotes were absent in the low MADR line. The homozygous Taar1m1J genotype is causally linked to increased MA intake, reduced MA-induced conditioned taste aversion, and reduced MA-induced hypothermia across models. Genotype-phenotype correlations range from 0.68 to 0.96. This Taar1 polymorphism exists in DBA/2J mice sourced directly from The Jackson Laboratory, but not DBA/2 mice sourced from Charles River (DBA/2NCrl), Envigo (formerly Harlan Sprague Dawley; DBA/2NHsd) or Taconic (DBA/2NTac). By genotyping archived samples from The Jackson Laboratory, we have determined that this mutation arose in 2001-2003. Our data strengthen the conclusion that the mutant Taar1m1J allele, which codes for a non-functional receptor protein, increases risk for multiple MA-related traits, including MA intake, in homozygous Taar1m1J individuals.

7.
Mamm Genome ; 24(11-12): 446-58, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24217691

ABSTRACT

Lines of mice were created by selective breeding for the purpose of identifying genetic mechanisms that influence the magnitude of the selected trait and to explore genetic correlations for additional traits thought to be influenced by shared mechanisms. DNA samples from high and low methamphetamine-drinking (MADR) and high and low methamphetamine-sensitization lines were used for quantitative trait locus (QTL) mapping. Significant additive genetic correlations between the two traits indicated a common genetic influence, and a QTL on chromosome X was detected for both traits, suggesting one source of this commonality. For MADR mice, a QTL on chromosome 10 accounted for more than 50 % of the genetic variance in that trait. Microarray gene expression analyses were performed for three brain regions for methamphetamine-naïve MADR line mice: nucleus accumbens, prefrontal cortex, and ventral midbrain. Many of the genes that were differentially expressed between the high and low MADR lines were shared in common across the three brain regions. A gene network highly enriched in transcription factor genes was identified as being relevant to genetically determined differences in methamphetamine intake. When the mu opioid receptor gene (Oprm1), located on chromosome 10 in the QTL region, was added to this top-ranked transcription factor network, it became a hub in the network. These data are consistent with previously published findings of opioid response and intake differences between the MADR lines and suggest that Oprm1, or a gene that impacts activity of the opioid system, plays a role in genetically determined differences in methamphetamine intake.


Subject(s)
Methamphetamine/metabolism , Substance-Related Disorders/genetics , Animals , Brain/metabolism , Gene Regulatory Networks , Genetic Predisposition to Disease , Genotype , Humans , Male , Mice , Quantitative Trait Loci , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Substance-Related Disorders/metabolism
8.
Psychopharmacology (Berl) ; 214(4): 791-804, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21088960

ABSTRACT

RATIONALE: Genetically determined differences in susceptibility to drug-induced sensitization could be related to risk for drug consumption. OBJECTIVES: Studies were performed to determine whether selective breeding could be used to create lines of mice with different magnitudes of locomotor sensitization to methamphetamine (MA). MA sensitization (MASENS) lines were also examined for genetically correlated responses to MA. METHODS: Beginning with the F2 cross of C57BL/6J and DBA/2J strains, mice were tested for locomotor sensitization to repeated injections of 1 mg/kg MA and bred based on magnitude of sensitization. Five selected offspring generations were tested. All generations were also tested for MA consumption, and some were tested for dose-dependent locomotor-stimulant responses to MA, consumption of saccharin, quinine, and potassium chloride as a measure of taste sensitivity, and MA clearance after acute and repeated MA. RESULTS: Selective breeding resulted in creation of two lines [MA high sensitization (MAHSENS) and MA low sensitization (MALSENS)] that differed in magnitude of MA-induced sensitization. Initially, greater MA consumption in MAHSENS mice reversed over the course of selection so that MALSENS mice consumed more MA. MAHSENS mice exhibited greater sensitivity to the acute stimulant effects of MA, but there were no significant differences between the lines in MA clearance from blood. CONCLUSIONS: Genetic factors influence magnitude of MA-induced locomotor sensitization and some of the genes involved in magnitude of this response also influence MA sensitivity and consumption. Genetic factors leading to greater MA-induced sensitization may serve a protective role against high levels of MA consumption.


Subject(s)
Amphetamine-Related Disorders/genetics , Behavior, Animal/drug effects , Breeding/methods , Central Nervous System Stimulants/pharmacology , Genetic Predisposition to Disease/genetics , Methamphetamine/pharmacology , Selection, Genetic , Animals , Central Nervous System Stimulants/administration & dosage , Dose-Response Relationship, Drug , Methamphetamine/administration & dosage , Mice , Mice, Inbred Strains , Motor Activity/drug effects , Motor Activity/genetics , Stereotyped Behavior/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...