Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(7): e39871, 2012.
Article in English | MEDLINE | ID: mdl-22802946

ABSTRACT

A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair.


Subject(s)
Mesenchymal Stem Cells/metabolism , Monocytes/metabolism , Osteoblasts/cytology , Osteogenesis , STAT3 Transcription Factor/physiology , Cell Differentiation/drug effects , Cells, Cultured , Coculture Techniques , Core Binding Factor Alpha 1 Subunit/biosynthesis , Humans , Oncostatin M/physiology , Osteogenesis/drug effects , Signal Transduction/drug effects , Up-Regulation
2.
PLoS One ; 6(1): e16152, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-21264344

ABSTRACT

MicroRNAs are small non-coding RNA molecules that regulate mRNA translation and stability by binding to complementary sequences usually within the 3' un-translated region (UTR). We have previously shown that the hepatic toxicity caused by wild-type Adenovirus 5 (Ad5WT) in mice can be prevented by incorporating 4 binding sites for the liver-specific microRNA, mir122, into the 3' UTR of E1A mRNA. This virus, termed Ad5mir122, is a promising virotherapy candidate and causes no obvious liver pathology. Herein we show that Ad5mir122 maintains wild-type lytic activity in cancer cells not expressing mir122 and assess any effects of possible mir122 depletion in host cells. Repeat administration of 2×10(10) viral particles of Admir122 to HepG2 tumour bearing mice showed significant anti-cancer efficacy. RT-QPCR showed that E1A mRNA was down-regulated 29-fold in liver when compared to Ad5WT. Western blot for E1A confirmed that all protein variants were knocked down. RT-QPCR for mature mir122 in infected livers showed that quantity of mir122 remained unaffected. Genome wide mRNA microarray profiling of infected livers showed that although the transcript level of >3900 different mRNAs changed more than 2-fold following Ad5WT infection, less than 600 were changed by Ad5mir122. These were then filtered to select mRNAs that were only altered by Ad5mir122 and the remaining 21 mRNAs were compared to predicted mir122 targets. No mir122 target mRNAs were affected by Ad5 mir122. These results demonstrate that the exploitation of microRNA regulation to control virus replication does not necessarily affect the level of the microRNA or the endogenous mRNA targets.


Subject(s)
Adenoviridae/genetics , MicroRNAs/therapeutic use , Neoplasms, Experimental/therapy , Animals , Hep G2 Cells , Humans , Liver/chemistry , Mice , MicroRNAs/analysis , Transplantation, Heterologous , Treatment Outcome , Virion
SELECTION OF CITATIONS
SEARCH DETAIL