Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2615: 173-188, 2023.
Article in English | MEDLINE | ID: mdl-36807792

ABSTRACT

Reminiscent of their evolutionary origin, mitochondria contain their own genome (mtDNA) compacted into the mitochondrial chromosome or nucleoid (mt-nucleoid). Many mitochondrial disorders are characterized by disruption of mt-nucleoids, either by direct mutation of genes involved in mtDNA organization or by interfering with other vital proteins for mitochondrial function. Thus, changes in mt-nucleoid morphology, distribution, and structure are a common feature in many human diseases and can be exploited as an indicator of cellular fitness. Electron microscopy provides the highest possible resolution that can be achieved, delivering spatial and structural information about all cellular structures. Recently, the ascorbate peroxidase APEX2 has been used to increase transmission electron microscopy (TEM) contrast by inducing diaminobenzidine (DAB) precipitation. DAB has the ability to accumulate osmium during classical EM sample preparation and, due to its high electron density, provides strong contrast for TEM. Among the nucleoid proteins, the mitochondrial helicase Twinkle fused with APEX2 has been successfully used to target mt-nucleoids, providing a tool to visualize these subcellular structures with high contrast and with the resolution of an electron microscope. In the presence of H2O2, APEX2 catalyzes the polymerization of DAB, generating a brown precipitate that can be visualized in specific regions of the mitochondrial matrix. Here, we provide a detailed protocol to generate murine cell lines expressing a transgenic variant of Twinkle, suitable to target and visualize mt-nucleoids. We also describe all the necessary steps to validate the cell lines prior to electron microscopy imaging and offer examples of anticipated results.


Subject(s)
Hydrogen Peroxide , Mitochondria , Animals , Mice , Humans , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , DNA, Mitochondrial/genetics , Animals, Genetically Modified , DNA Helicases/metabolism , Microscopy, Electron, Transmission , Mitochondrial Proteins/metabolism , Endonucleases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Multifunctional Enzymes
2.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502122

ABSTRACT

Extracellular vesicles (EVs) are reminiscent of their cell of origin and thus represent a valuable source of biomarkers. However, for EVs to be used as biomarkers in clinical practice, simple, comparable, and reproducible analytical methods must be applied. Although progress is being made in EV separation methods for human biofluids, the implementation of EV assays for clinical diagnosis and common guidelines are still lacking. We conducted a comprehensive analysis of established EV separation techniques from human serum and plasma, including ultracentrifugation and size exclusion chromatography (SEC), followed by concentration using (a) ultracentrifugation, (b) ultrafiltration, or (c) precipitation, and immunoaffinity isolation. We analyzed the size, number, protein, and miRNA content of the obtained EVs and assessed the functional delivery of EV cargo. Our results demonstrate that all methods led to an adequate yield of small EVs. While no significant difference in miRNA content was observed for the different separation methods, ultracentrifugation was best for subsequent flow cytometry analysis. Immunoaffinity isolation is not suitable for subsequent protein analyses. SEC + ultracentrifugation showed the best functional delivery of EV cargo. In summary, combining SEC with ultracentrifugation gives the highest yield of pure and functional EVs and allows reliable analysis of both protein and miRNA contents. We propose this combination as the preferred EV isolation method for biomarker studies from human serum or plasma.


Subject(s)
Cell Fractionation , Chemical Fractionation , Extracellular Vesicles/metabolism , Biological Transport , Biomarkers , Cell Fractionation/methods , Chemical Fractionation/methods , Extracellular Vesicles/ultrastructure , Flow Cytometry , Humans , Liquid Biopsy/methods , Proteins/metabolism
3.
Front Cell Dev Biol ; 9: 698503, 2021.
Article in English | MEDLINE | ID: mdl-34395429

ABSTRACT

CD30, a member of the TNF receptor superfamily, is selectively expressed on a subset of activated lymphocytes and on malignant cells of certain lymphomas, such as classical Hodgkin Lymphoma (cHL), where it activates critical bystander cells in the tumor microenvironment. Therefore, it is not surprising that the CD30 antibody-drug conjugate Brentuximab Vedotin (BV) represents a powerful, FDA-approved treatment option for CD30+ hematological malignancies. However, BV also exerts a strong anti-cancer efficacy in many cases of diffuse large B cell lymphoma (DLBCL) with poor CD30 expression, even when lacking detectable CD30+ tumor cells. The mechanism remains enigmatic. Because CD30 is released on extracellular vesicles (EVs) from both, malignant and activated lymphocytes, we studied whether EV-associated CD30 might end up in CD30- tumor cells to provide binding sites for BV. Notably, CD30+ EVs bind to various DLBCL cell lines as well as to the FITC-labeled variant of the antibody-drug conjugate BV, thus potentially conferring the BV binding also to CD30- cells. Confocal microscopy and imaging cytometry studies revealed that BV binding and uptake depend on CD30+ EVs. Since BV is only toxic toward CD30- DLBCL cells when CD30+ EVs support its uptake, we conclude that EVs not only communicate within the tumor microenvironment but also influence cancer treatment. Ultimately, the CD30-based BV not only targets CD30+ tumor cell but also CD30- DLBCL cells in the presence of CD30+ EVs. Our study thus provides a feasible explanation for the clinical impact of BV in CD30- DLBCL and warrants confirming studies in animal models.

4.
Life Sci Alliance ; 3(6)2020 06.
Article in English | MEDLINE | ID: mdl-32321733

ABSTRACT

Lipid droplets (LDs) are metabolic organelles that store neutral lipids and dynamically respond to changes in energy availability by accumulating or mobilizing triacylglycerols (TAGs). How the plastic behavior of LDs is regulated is poorly understood. Hereditary spastic paraplegia is a central motor axonopathy predominantly caused by mutations in SPAST, encoding the microtubule-severing protein spastin. The spastin-M1 isoform localizes to nascent LDs in mammalian cells; however, the mechanistic significance of this targeting is not fully explained. Here, we show that tightly controlled levels of spastin-M1 are required to inhibit LD biogenesis and TAG accumulation. Spastin-M1 maintains the morphogenesis of the ER when TAG synthesis is prevented, independent from microtubule binding. Moreover, spastin plays a microtubule-dependent role in mediating the dispersion of LDs from the ER upon glucose starvation. Our results reveal a dual role of spastin to shape ER tubules and to regulate LD movement along microtubules, opening new perspectives for the pathogenesis of hereditary spastic paraplegia.


Subject(s)
Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Microtubules/metabolism , Signal Transduction/genetics , Spastic Paraplegia, Hereditary/metabolism , Spastin/deficiency , Animals , Cell Line, Tumor , Fibroblasts/metabolism , Gene Knockout Techniques , HEK293 Cells , Humans , Isoenzymes , Mice , Motor Neurons/metabolism , Mutation , Spastic Paraplegia, Hereditary/genetics , Spastin/genetics , Transfection , Triglycerides/metabolism
5.
Life Sci Alliance ; 2(6)2019 12.
Article in English | MEDLINE | ID: mdl-31740565

ABSTRACT

Mitofusins are dynamin-related GTPases that drive mitochondrial fusion by sequential events of oligomerization and GTP hydrolysis, followed by their ubiquitylation. Here, we show that fusion requires a trilateral salt bridge at a hinge point of the yeast mitofusin Fzo1, alternatingly forming before and after GTP hydrolysis. Mutations causative of Charcot-Marie-Tooth disease massively map to this hinge point site, underlining the disease relevance of the trilateral salt bridge. A triple charge swap rescues the activity of Fzo1, emphasizing the close coordination of the hinge residues with GTP hydrolysis. Subsequently, ubiquitylation of Fzo1 allows the AAA-ATPase ubiquitin-chaperone Cdc48 to resolve Fzo1 clusters, releasing the dynamin for the next fusion round. Furthermore, cross-complementation within the oligomer unexpectedly revealed ubiquitylated but fusion-incompetent Fzo1 intermediates. However, Cdc48 did not affect the ubiquitylated but fusion-incompetent variants, indicating that Fzo1 ubiquitylation is only controlled after membrane merging. Together, we present an integrated model on how mitochondrial outer membranes fuse, a critical process for their respiratory function but also putatively relevant for therapeutic interventions.


Subject(s)
GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mitochondrial Dynamics/physiology , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Valosin Containing Protein/chemistry , Valosin Containing Protein/metabolism , Animals , Fibroblasts , Membrane Fusion/physiology , Mice , Mitochondria/metabolism , Mitochondrial Membranes/chemistry , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Saccharomyces cerevisiae , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitination
6.
J Extracell Vesicles ; 8(1): 1596016, 2019.
Article in English | MEDLINE | ID: mdl-30988894

ABSTRACT

The expanding field of extracellular vesicle (EV) research needs reproducible and accurate methods to characterize single EVs. Nanoparticle Tracking Analysis (NTA) is commonly used to determine EV concentration and diameter. As the EV field is lacking methods to easily confirm and validate NTA data, questioning the reliability of measurements remains highly important. In this regard, a comparison addressing measurement quality between different NTA devices such as Malvern's NanoSight NS300 or Particle Metrix' ZetaView has not yet been conducted. To evaluate the accuracy and repeatability of size and concentration determinations of both devices, we employed comparative methods including transmission electron microscopy (TEM) and single particle interferometric reflectance imaging sensing (SP-IRIS) by ExoView. Multiple test measurements with nanospheres, liposomes and ultracentrifuged EVs from human serum and cell culture supernatant were performed. Additionally, serial dilutions and freeze-thaw cycle-dependent EV decrease were measured to determine the robustness of each system. Strikingly, NanoSight NS300 exhibited a 2.0-2.1-fold overestimation of polystyrene and silica nanosphere concentration. By measuring serial dilutions of EV samples, we demonstrated higher accuracy in concentration determination by ZetaView (% BIAS range: 2.7-8.5) in comparison with NanoSight NS300 (% BIAS range: 32.9-36.8). The concentration measurements by ZetaView were also more precise (% CV range: 0.0-4.7) than measurements by NanoSight NS300 (% CV range: 5.4-10.7). On the contrary, quantitative TEM imaging indicated more accurate EV sizing by NanoSight NS300 (% DTEM range: 79.5-134.3) compared to ZetaView (% DTEM range: 111.8-205.7), while being equally repeatable (NanoSight NS300% CV range: 0.8-6.7; ZetaView: 1.4-7.8). However, both devices failed to report a peak EV diameter below 60 nm compared to TEM and SP-IRIS. Taken together, NTA devices differ strongly in their hardware and software affecting measuring results. ZetaView provided a more accurate and repeatable depiction of EV concentration, whereas NanoSight NS300 supplied size measurements of higher resolution.

7.
Dev Cell ; 47(6): 697-710.e3, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30482667

ABSTRACT

The blood-brain barrier is crucial for nervous system function. It is established early during development and stays intact during growth of the brain. In invertebrates, septate junctions are the occluding junctions of this barrier. Here, we used Drosophila to address how septate junctions grow during larval stages when brain size increases dramatically. We show that septate junctions are preassembled as long, highly folded strands during embryonic stages, connecting cell vertices. During subsequent cell growth, these corrugated strands are stretched out and stay intact during larval life with very little protein turnover. The G-protein coupled receptor Moody orchestrates the continuous organization of junctional strands in a process requiring F-actin. Consequently, in moody mutants, septate junction strands cannot properly stretch out during cell growth. To compensate for the loss of blood-brain barrier function, moody mutants form interdigitating cell-cell protrusions, resembling the evolutionary ancient barrier type found in primitive vertebrates or invertebrates such as cuttlefish.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiology , Drosophila Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Actins/metabolism , Animals , Biological Transport , Blood-Brain Barrier/cytology , Brain/embryology , Brain/metabolism , Cell Membrane/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Epithelial Cells/metabolism , Intercellular Junctions/metabolism , Larva/metabolism , Neuroglia/metabolism , Receptors, G-Protein-Coupled/genetics , Tight Junctions/metabolism
9.
Development ; 142(7): 1336-45, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25758464

ABSTRACT

Efficient neuronal conductance requires that axons are insulated by glial cells. For this, glial membranes need to wrap around axons. Invertebrates show a relatively simple extension of glial membranes around the axons, resembling Remak fibers formed by Schwann cells in the mammalian peripheral nervous system. To unravel the molecular pathways underlying differentiation of glial cells that provide axonal wrapping, we are using the genetically amenable Drosophila model. At the end of larval life, the wrapping glia differentiates into very large cells, spanning more than 1 mm of axonal length. The extension around axonal membranes is not influenced by the caliber of the axon or its modality. Using cell type-specific gene knockdown we show that the extension of glial membranes around the axons is regulated by an autocrine activation of the EGF receptor through the neuregulin homolog Vein. This resembles the molecular mechanism employed during cell-autonomous reactivation of glial differentiation after injury in mammals. We further demonstrate that Vein, produced by the wrapping glia, also regulates the formation of septate junctions in the abutting subperineurial glia. Moreover, the wrapping glia indirectly controls the proliferation of the perineurial glia. Thus, the wrapping glia appears center stage to orchestrate the development of the different glial cell layers in a peripheral nerve.


Subject(s)
Axons/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Neuregulins/metabolism , Neuroglia/metabolism , Peripheral Nervous System/metabolism , Sequence Homology, Amino Acid , Animals , Axons/ultrastructure , Blood-Brain Barrier/metabolism , Cell Differentiation , Drosophila melanogaster/cytology , Drosophila melanogaster/ultrastructure , ErbB Receptors/metabolism , Larva/cytology , Larva/metabolism , Larva/ultrastructure , Neuroglia/cytology , Neuroglia/ultrastructure , Peripheral Nerves/cytology , Peripheral Nerves/metabolism , Peripheral Nerves/ultrastructure , Peripheral Nervous System/cytology , Peripheral Nervous System/ultrastructure , Signal Transduction
10.
Front Neurosci ; 8: 365, 2014.
Article in English | MEDLINE | ID: mdl-25452710

ABSTRACT

The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...