Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Blood ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457773

ABSTRACT

Haemoglobin Bart's hydrops fetalis syndrome (BHFS) represents the most severe form of α-thalassaemia, arising from deletion of the duplicated α-globin genes from both alleles. The absence of α-globin leads to the formation of non-functional haemoglobin Bart's (γ4) or haemoglobin H (HbH: ß4) resulting in severe anaemia, tissue hypoxia, and, in some cases, variable congenital or neurocognitive abnormalities. BHFS is the most common cause of hydrops fetalis in Southeast Asia; however, owing to global migration, the burden of this condition is increasing worldwide. With the availability of intensive perinatal care and intrauterine transfusions, an increasing number of patients survive with this condition. The current approach to long-term management of survivors involves regular blood transfusions and iron chelation, a task made challenging by the need for intensified transfusions to suppress the production of non-functional HbH-containing erythrocytes. While our knowledge of outcomes of this condition is evolving, it seems, in comparison to individuals with transfusion-dependent ß-thalassaemia, those with BHFS may face an elevated risk of complications arising from chronic anaemia and hypoxia, ongoing haemolysis, iron overload, and from their respective treatments. Although stem cell transplantation remains a viable option for a select few, it is not without potential side effects. Looking ahead, potential advancements in the form of genetic engineering and innovative therapeutic approaches, such as the reactivation of embryonic α-like globin gene expression, hold promise for furthering the treatment of this condition. Prevention remains a crucial aspect of care, particularly in areas with high prevalence or limited resources.

2.
Cell ; 186(26): 5826-5839.e18, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38101409

ABSTRACT

Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.


Subject(s)
Gene Expression Regulation , Super Enhancers , Transcription, Genetic , alpha-Globins , Enhancer Elements, Genetic , Promoter Regions, Genetic , Transcription Factors/metabolism , alpha-Globins/genetics
3.
Genome Med ; 15(1): 94, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946251

ABSTRACT

BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.


Subject(s)
Genetic Variation , Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing , Genetic Testing , Mutation , Cell Cycle Proteins
4.
bioRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37808769

ABSTRACT

Generation of mature cells from progenitors requires tight coupling of differentiation and metabolism. During erythropoiesis, erythroblasts are required to massively upregulate globin synthesis then clear extraneous material and enucleate to produce erythrocytes1-3. Nprl3 has remained in synteny with the α-globin genes for >500 million years4, and harbours the majority of the α-globin enhancers5. Nprl3 is a highly conserved inhibitor of mTORC1, which controls cellular metabolism. However, whether Nprl3 itself serves an erythroid role is unknown. Here, we show that Nprl3 is a key regulator of erythroid metabolism. Using Nprl3-deficient fetal liver and adult competitive bone marrow - fetal liver chimeras, we show that NprI3 is required for sufficient erythropoiesis. Loss of Nprl3 elevates mTORC1 signalling, suppresses autophagy and disrupts erythroblast glycolysis and redox control. Human CD34+ progenitors lacking NPRL3 produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Finally, we show that the α-globin enhancers upregulate NprI3 expression, and that this activity is necessary for optimal erythropoiesis. Therefore, the anciently conserved linkage of NprI3, α-globin and their associated enhancers has enabled coupling of metabolic and developmental control in erythroid cells. This may enable erythropoiesis to adapt to fluctuating nutritional and environmental conditions.

6.
Dev Cell ; 58(20): 2112-2127.e4, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37586368

ABSTRACT

Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with ß-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.


Subject(s)
Gene Expression Regulation , RNA Polymerase II , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Cell Differentiation , Cell Cycle , Transcription, Genetic , Nuclear Proteins/metabolism , Transcriptional Elongation Factors/genetics
7.
Hum Mol Genet ; 32(15): 2485-2501, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37171606

ABSTRACT

ATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males. Clinical features also include facial dysmorphism, microcephaly, short stature, musculoskeletal defects and genital abnormalities. As complete deletion of ATRX in mice results in early embryonic lethality, the field has largely relied on conditional knockout models to assess the role of ATRX in multiple tissues. Given that null alleles are not found in patients, a more patient-relevant model was needed. Here, we have produced and characterized the first patient mutation knock-in model of ATR-X syndrome, carrying the most common causative mutation, R246C. This is one of a cluster of missense mutations located in the chromatin-binding domain and disrupts its function. The knock-in mice recapitulate several aspects of the patient disorder, including craniofacial defects, microcephaly, reduced body size and impaired neurological function. They provide a powerful model for understanding the molecular mechanisms underlying ATR-X syndrome and testing potential therapeutic strategies.


Subject(s)
Mental Retardation, X-Linked , Microcephaly , alpha-Thalassemia , Animals , Male , Mice , alpha-Thalassemia/genetics , Mental Retardation, X-Linked/genetics , Microcephaly/genetics , Mutation , Nuclear Proteins/genetics , X-linked Nuclear Protein/genetics , Humans
8.
medRxiv ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36945604

ABSTRACT

The controlled release of promoter-proximal paused RNA polymerase II (Pol II) into productive elongation is a major step in gene regulation. However, functional analysis of Pol II pausing is difficult because factors that regulate pause release are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H , which encodes SPT5, in individuals with ß-thalassemia unlinked to HBB mutations. During erythropoiesis in healthy human cells, cell cycle genes were highly paused at the transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, Pol II pause release was globally disrupted, and the transition from progenitors to precursors was delayed, marked by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, revealing a role for Pol II pausing in the temporal coordination between the cell cycle and differentiation.

10.
PLoS One ; 17(1): e0261950, 2022.
Article in English | MEDLINE | ID: mdl-34995303

ABSTRACT

Mouse embryonic stem cells (mESCs) can be manipulated in vitro to recapitulate the process of erythropoiesis, during which multipotent cells undergo lineage specification, differentiation and maturation to produce erythroid cells. Although useful for identifying specific progenitors and precursors, this system has not been fully exploited as a source of cells to analyse erythropoiesis. Here, we establish a protocol in which characterised erythroblasts can be isolated in a scalable manner from differentiated embryoid bodies (EBs). Using transcriptional and epigenetic analysis, we demonstrate that this system faithfully recapitulates normal primitive erythropoiesis and fully reproduces the effects of natural and engineered mutations seen in primary cells obtained from mouse models. We anticipate this system to be of great value in reducing the time and costs of generating and maintaining mouse lines in a number of research scenarios.


Subject(s)
Cell Differentiation , Embryoid Bodies/metabolism , Erythroblasts/metabolism , Erythropoiesis , Models, Biological , Mouse Embryonic Stem Cells/metabolism , Animals , Cell Line , Embryoid Bodies/cytology , Erythroblasts/cytology , Mice , Mouse Embryonic Stem Cells/cytology
11.
Nat Commun ; 12(1): 4439, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290235

ABSTRACT

The α- and ß-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.


Subject(s)
Gene Expression Regulation, Developmental , Gene Silencing , Transcriptional Activation , zeta-Globins/genetics , Acetylation , Animals , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , Erythroid Cells/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Silencing/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Activation/drug effects , alpha-Globins/genetics
12.
Haematologica ; 106(11): 2960-2970, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33121234

ABSTRACT

The investigation of inherited disorders of erythropoiesis has elucidated many of the principles underlying the production of normal red blood cells and how this is perturbed in human disease. Congenital Dyserythropoietic Anaemia type 1 (CDA-I) is a rare form of anaemia caused by mutations in two genes of unknown function: CDAN1 and CDIN1 (previously called C15orf41), whilst in some cases, the underlying genetic abnormality is completely unknown. Consequently, the pathways affected in CDA-I remain to be discovered. To enable detailed analysis of this rare disorder we have validated a culture system which recapitulates all of the cardinal haematological features of CDA-I, including the formation of the pathognomonic 'spongy' heterochromatin seen by electron microscopy. Using a variety of cell and molecular biological approaches we discovered that erythroid cells in this condition show a delay during terminal erythroid differentiation, associated with increased proliferation and widespread changes in chromatin accessibility. We also show that the proteins encoded by CDAN1 and CDIN1 are enriched in nucleoli which are structurally and functionally abnormal in CDA-I. Together these findings provide important pointers to the pathways affected in CDA-I which for the first time can now be pursued in the tractable culture system utilised here.


Subject(s)
Anemia, Dyserythropoietic, Congenital , Anemia, Dyserythropoietic, Congenital/diagnosis , Anemia, Dyserythropoietic, Congenital/genetics , Erythroid Cells , Erythropoiesis , Glycoproteins/genetics , Humans , Nuclear Proteins/genetics
13.
J Med Genet ; 58(3): 185-195, 2021 03.
Article in English | MEDLINE | ID: mdl-32518175

ABSTRACT

BACKGROUND: Congenital dyserythropoietic anaemia type I (CDA-I) is a hereditary anaemia caused by biallelic mutations in the widely expressed genes CDAN1 and C15orf41. Little is understood about either protein and it is unclear in which cellular pathways they participate. METHODS: Genetic analysis of a cohort of patients with CDA-I identifies novel pathogenic variants in both known causative genes. We analyse the mutation distribution and the predicted structural positioning of amino acids affected in Codanin-1, the protein encoded by CDAN1. Using western blotting, immunoprecipitation and immunofluorescence, we determine the effect of particular mutations on both proteins and interrogate protein interaction, stability and subcellular localisation. RESULTS: We identify six novel CDAN1 mutations and one novel mutation in C15orf41 and uncover evidence of further genetic heterogeneity in CDA-I. Additionally, population genetics suggests that CDA-I is more common than currently predicted. Mutations are enriched in six clusters in Codanin-1 and tend to affect buried residues. Many missense and in-frame mutations do not destabilise the entire protein. Rather C15orf41 relies on Codanin-1 for stability and both proteins, which are enriched in the nucleolus, interact to form an obligate complex in cells. CONCLUSION: Stability and interaction data suggest that C15orf41 may be the key determinant of CDA-I and offer insight into the mechanism underlying this disease. Both proteins share a common pathway likely to be present in a wide variety of cell types; however, nucleolar enrichment may provide a clue as to the erythroid specific nature of CDA-I. The surprisingly high predicted incidence of CDA-I suggests that better ascertainment would lead to improved patient care.


Subject(s)
Anemia, Dyserythropoietic, Congenital/genetics , Genetic Predisposition to Disease , Glycoproteins/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Anemia, Dyserythropoietic, Congenital/pathology , Female , Gene Expression Regulation/genetics , Genetic Testing , Genetics, Population , Humans , Male , Multiprotein Complexes/genetics , Mutation/genetics
14.
J Med Genet ; 57(6): 414-421, 2020 06.
Article in English | MEDLINE | ID: mdl-32005695

ABSTRACT

BACKGROUND: Deletions removing 100s-1000s kb of DNA, and variable numbers of poorly characterised genes, are often found in patients with a wide range of developmental abnormalities. In such cases, understanding the contribution of the deletion to an individual's clinical phenotype is challenging. METHODS: Here, as an example of this common phenomenon, we analysed 41 patients with simple deletions of ~177 to ~2000 kb affecting one allele of the well-characterised, gene dense, distal region of chromosome 16 (16p13.3), referred to as ATR-16 syndrome. We characterised deletion extents and screened for genetic background effects, telomere position effect and compensatory upregulation of hemizygous genes. RESULTS: We find the risk of developmental and neurological abnormalities arises from much smaller distal chromosome 16 deletions (~400 kb) than previously reported. Beyond this, the severity of ATR-16 syndrome increases with deletion size, but there is no evidence that critical regions determine the developmental abnormalities associated with this disorder. Surprisingly, we find no evidence of telomere position effect or compensatory upregulation of hemizygous genes; however, genetic background effects substantially modify phenotypic abnormalities. CONCLUSIONS: Using ATR-16 as a general model of disorders caused by CNVs, we show the degree to which individuals with contiguous gene syndromes are affected is not simply related to the number of genes deleted but depends on their genetic background. We also show there is no critical region defining the degree of phenotypic abnormalities in ATR-16 syndrome and this has important implications for genetic counselling.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA Copy Number Variations/genetics , Intellectual Disability/genetics , Monosomy/genetics , alpha-Thalassemia/genetics , Chromosome Deletion , Chromosomes, Human, Pair 16/genetics , Female , Gene Deletion , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Male , Monosomy/diagnosis , Monosomy/pathology , Phenotype , alpha-Thalassemia/diagnosis , alpha-Thalassemia/pathology
16.
Br J Haematol ; 185(3): 436-449, 2019 05.
Article in English | MEDLINE | ID: mdl-30836435

ABSTRACT

Congenital dyserythropoietic anaemia type I (CDA-I) is one of a heterogeneous group of inherited anaemias characterised by ineffective erythropoiesis. CDA-I is caused by bi-allelic mutations in either CDAN1 or C15orf41 and, to date, 56 causative mutations have been documented. The diagnostic pathway is reviewed and the utility of genetic testing in reducing the time taken to reach an accurate molecular diagnosis and avoiding bone marrow aspiration, where possible, is described. The management of CDA-I patients is discussed, highlighting both general and specific measures which impact on disease progression. The use of interferon alpha and careful management of iron overload are reviewed and suggest the most favourable outcomes are achieved when CDA-I patients are managed with a holistic and multidisciplinary approach. Finally, the current understanding of the molecular and cellular pathogenesis of CDA-I is presented, highlighting critical questions likely to lead to improved therapy for this disease.


Subject(s)
Alleles , Genetic Testing , Glycoproteins/genetics , Interferon-alpha/therapeutic use , Mutation , Nuclear Proteins/genetics , Anemia, Dyserythropoietic, Congenital/diagnosis , Anemia, Dyserythropoietic, Congenital/genetics , Anemia, Dyserythropoietic, Congenital/metabolism , Anemia, Dyserythropoietic, Congenital/therapy , Glycoproteins/metabolism , Humans , Iron Overload/diagnosis , Iron Overload/genetics , Iron Overload/metabolism , Iron Overload/prevention & control , Nuclear Proteins/metabolism
17.
Phys Rev Lett ; 122(4): 048103, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768286

ABSTRACT

The newborn mammalian cranial vault consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Early fusion of these sutures leads to a medical condition known as craniosynostosis. The mechanobiology of normal and craniosynostotic skull growth is not well understood. In a series of previous studies, we characterized and modeled radial expansion of normal and craniosynostotic (Crouzon) mice. Here, we describe a new modeling algorithm to simulate bone formation at the sutures in normal and craniosynostotic mice. Our results demonstrate that our modeling approach is capable of predicting the observed ex vivo pattern of bone formation at the sutures in the aforementioned mice. The same approach can be used to model different calvarial reconstruction in children with craniosynostosis to assist in the management of this complex condition.


Subject(s)
Models, Biological , Osteogenesis , Skull/growth & development , Animals , Mice , Skull/diagnostic imaging , Skull/physiology , X-Ray Microtomography
18.
Nat Commun ; 9(1): 3849, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30242161

ABSTRACT

Self-interacting chromatin domains encompass genes and their cis-regulatory elements; however, the three-dimensional form a domain takes, whether this relies on enhancer-promoter interactions, and the processes necessary to mediate the formation and maintenance of such domains, remain unclear. To examine these questions, here we use a combination of high-resolution chromosome conformation capture, a non-denaturing form of fluorescence in situ hybridisation and super-resolution imaging to study a 70 kb domain encompassing the mouse α-globin regulatory locus. We show that this region forms an erythroid-specific, decompacted, self-interacting domain, delimited by frequently apposed CTCF/cohesin binding sites early in terminal erythroid differentiation, and does not require transcriptional elongation for maintenance of the domain structure. Formation of this domain does not rely on interactions between the α-globin genes and their major enhancers, suggesting a transcription-independent mechanism for establishment of the domain. However, absence of the major enhancers does alter internal domain interactions. Formation of a loop domain therefore appears to be a mechanistic process that occurs irrespective of the specific interactions within.


Subject(s)
Chromatin/metabolism , Regulatory Sequences, Nucleic Acid , Animals , Erythroid Cells/metabolism , In Situ Hybridization, Fluorescence , Mice , Primary Cell Culture , Protein Domains , alpha-Globins/genetics
19.
Methods Protoc ; 1(3)2018 Jul 30.
Article in English | MEDLINE | ID: mdl-31164570

ABSTRACT

The study of cellular processes and gene regulation in terminal erythroid development has been greatly facilitated by the generation of an immortalised erythroid cell line derived from Human Umbilical Derived Erythroid Precursors, termed HUDEP-2 cells. The ability to efficiently genome edit HUDEP-2 cells and make clonal lines hugely expands their utility as the insertion of clinically relevant mutations allows study of potentially every genetic disease affecting red blood cell development. Additionally, insertion of sequences encoding short protein tags such as Strep, FLAG and Myc permits study of protein behaviour in the normal and disease state. This approach is useful to augment the analysis of patient cells as large cell numbers are obtainable with the additional benefit that the need for specific antibodies may be circumvented. This approach is likely to lead to insights into disease mechanisms and provide reagents to allow drug discovery. HUDEP-2 cells provide a favourable alternative to the existing immortalised erythroleukemia lines as their karyotype is much less abnormal. These cells also provide sufficient material for a broad range of analyses as it is possible to generate in vitro-differentiated erythroblasts in numbers 4-7 fold higher than starting cell numbers within 9-12 days of culture. Here we describe an efficient, robust and reproducible plasmid-based methodology to introduce short (<20 bp) DNA sequences into the genome of HUDEP-2 cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 Cas9 system combined with single-stranded oligodeoxynucleotide (ssODN) donors. This protocol produces genetically modified lines in ~30 days and could also be used to generate knock-out and knock-in mutations.

20.
J Anat ; 232(3): 440-448, 2018 03.
Article in English | MEDLINE | ID: mdl-29243252

ABSTRACT

During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological, chemical and perhaps mechanical signals between various elements of the craniofacial system. The aim of this study was to investigate to what extent a computational model can accurately predict the calvarial growth in wild-type (WT) and mutant type (MT) Fgfr2C342Y/+ mice displaying bicoronal suture fusion. A series of morphological studies were carried out to quantify the calvarial growth at P3, P10 and P20 in both mouse types. MicroCT images of a P3 specimen were used to develop a finite element model of skull growth to predict the calvarial shape of WT and MT mice at P10. Sensitivity tests were performed and the results compared with ex vivo P10 data. Although the models were sensitive to the choice of input parameters, they predicted the overall skull growth in the WT and MT mice. The models also captured the difference between the ex vivoWT and MT mice. This modelling approach has the potential to be translated to human skull growth and to enhance our understanding of the different reconstruction methods used to manage clinically the different forms of craniosynostosis, and in the long term possibly reduce the number of re-operations in children displaying this condition and thereby enhance their quality of life.


Subject(s)
Computer Simulation , Craniosynostoses/pathology , Skull/growth & development , Animals , Finite Element Analysis , Image Processing, Computer-Assisted/methods , Mice , X-Ray Microtomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...