Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 10(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38323604

ABSTRACT

Capturing the published corpus of information on all members of a given protein family should be an essential step in any study focusing on specific members of that family. Using a previously gathered dataset of more than 280 references mentioning a member of the DUF34 (NIF3/Ngg1-interacting Factor 3) family, we evaluated the efficiency of different databases and search tools, and devised a workflow that experimentalists can use to capture the most information published on members of a protein family in the least amount of time. To complement this workflow, web-based platforms allowing for the exploration of protein family members across sequenced genomes or for the analysis of gene neighbourhood information were reviewed for their versatility and ease of use. Recommendations that can be used for experimentalist users, as well as educators, are provided and integrated within a customized, publicly accessible Wiki.


Subject(s)
Genome , Base Sequence
2.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37205517

ABSTRACT

Capturing the published corpus of information on all members of a given protein family should be an essential step in any study focusing on specific members of that said family. Using a previously gathered dataset of more than 280 references mentioning a member of the DUF34 (NIF3/Ngg1-interacting Factor 3), we evaluated the efficiency of different databases and search tools, and devised a workflow that experimentalists can use to capture the most published information on members of a protein family in the least amount of time. To complement this workflow, web-based platforms allowing for the exploration of protein family members across sequenced genomes or for the analysis of gene neighborhood information were reviewed for their versatility and ease of use. Recommendations that can be used for experimentalist users, as well as educators, are provided and integrated within a customized, publicly accessible Wiki.

3.
Microbiology (Reading) ; 169(4)2023 04.
Article in English | MEDLINE | ID: mdl-37040165

ABSTRACT

Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6 and a cofactor for many essential metabolic processes such as amino acid biosynthesis and one carbon metabolism. 4'-deoxypyridoxine (4dPN) is a long known B6 antimetabolite but its mechanism of action was not totally clear. By exploring different conditions in which PLP metabolism is affected in the model organism Escherichia coli K12, we showed that 4dPN cannot be used as a source of vitamin B6 as previously claimed and that it is toxic in several conditions where vitamin B6 homeostasis is affected, such as in a B6 auxotroph or in a mutant lacking the recently discovered PLP homeostasis gene, yggS. In addition, we found that 4dPN sensitivity is likely the result of multiple modes of toxicity, including inhibition of PLP-dependent enzyme activity by 4'-deoxypyridoxine phosphate (4dPNP) and inhibition of cumulative pyridoxine (PN) uptake. These toxicities are largely dependent on the phosphorylation of 4dPN by pyridoxal kinase (PdxK).


Subject(s)
Escherichia coli K12 , Escherichia coli Proteins , Pyridoxine/metabolism , Vitamin B 6/metabolism , Escherichia coli K12/metabolism , Pyridoxal Phosphate/metabolism , Homeostasis , Vitamins , Carrier Proteins , Escherichia coli Proteins/metabolism
5.
Protein Sci ; 31(11): e4471, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36218140

ABSTRACT

The pyridoxal 5'-phosphate (PLP) homeostasis protein (PLPHP) is a ubiquitous member of the COG0325 family with apparently no catalytic activity. Although the actual cellular role of this protein is unknown, it has been observed that mutations of the PLPHP encoding gene affect the activity of PLP-dependent enzymes, B6 vitamers and amino acid levels. Here we report a detailed characterization of the Escherichia coli ortholog of PLPHP (YggS) with respect to its PLP binding and transfer properties, stability, and structure. YggS binds PLP very tightly and is able to slowly transfer it to a model PLP-dependent enzyme, serine hydroxymethyltransferase. PLP binding to YggS elicits a conformational/flexibility change in the protein structure that is detectable in solution but not in crystals. We serendipitously discovered that the K36A variant of YggS, affecting the lysine residue that binds PLP at the active site, is able to bind PLP covalently. This observation led us to recognize that a number of lysine residues, located at the entrance of the active site, can replace Lys36 in its PLP binding role. These lysines form a cluster of charged residues that affect protein stability and conformation, playing an important role in PLP binding and possibly in YggS function.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Lysine/metabolism , Pyridoxal Phosphate , Proteins/chemistry , Protein Stability , Homeostasis , Phosphates/metabolism , Carrier Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
6.
Database (Oxford) ; 20222022 08 12.
Article in English | MEDLINE | ID: mdl-35961013

ABSTRACT

Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.


Subject(s)
Genomics , Proteins , Base Sequence , Computational Biology , Genome , Molecular Sequence Annotation
7.
J Bacteriol ; 202(23)2020 11 04.
Article in English | MEDLINE | ID: mdl-32900831

ABSTRACT

We report that the small Escherichia coli membrane protein DrpB (formerly YedR) is involved in cell division. We discovered DrpB in a screen for multicopy suppressors of a ΔftsEX mutation that prevents divisome assembly when cells are plated on low ionic strength medium, such as lysogeny broth without NaCl. Characterization of DrpB revealed that (i) translation initiates at an ATG annotated as codon 22 rather than the GTG annotated as codon 1, (ii) DrpB localizes to the septal ring when cells are grown in medium of low ionic strength but localization is greatly reduced in medium of high ionic strength, (iii) overproduction of DrpB in a ΔftsEX mutant background improves recruitment of the septal peptidoglycan synthase FtsI, implying multicopy suppression works by rescuing septal ring assembly, (iv) a ΔdrpB mutant divides quite normally, but a ΔdrpB ΔdedD double mutant has a strong division and viability defect, albeit only in medium of high ionic strength, and (v) DrpB homologs are found in E. coli and a few closely related enteric bacteria, but not outside this group. In sum, DrpB is a poorly conserved nonessential division protein that improves the efficiency of cytokinesis under suboptimal conditions. Proteins like DrpB are likely to be a widespread feature of the bacterial cell division apparatus, but they are easily overlooked because mutants lack obvious shape defects.IMPORTANCE A thorough understanding of bacterial cell division requires identifying and characterizing all of the proteins that participate in this process. Our discovery of DrpB brings us one step closer to this goal in E. coli.


Subject(s)
Escherichia coli/cytology , Escherichia coli/metabolism , Cell Division , Cytokinesis , Escherichia coli/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...